已知a,b,c為三角形的三邊長,且滿足a2+b2+c2+338=10a+24b+26c,試確定這個三角形的形狀.
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:現(xiàn)對已知的式子變形,出現(xiàn)三個非負(fù)數(shù)的平方和等于0的形式,求出a、b、c,再驗(yàn)證兩小邊的平方和是否等于最長邊的平方即可.
解答: 解:由a2+b2+c2+338=10a+24b+26c,
得:(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0,
即:(a-5)2+(b-12)2+(c-13)2=0,
由非負(fù)數(shù)的性質(zhì)可得:
a-5=0
b-12=0
c-13=0
,
解得:
a=5
b=12
c=13
,
∵52+122=169=132,即a2+b2=c2,
∴∠C=90°,
則三角形ABC為直角三角形.
點(diǎn)評:此題考查了勾股定理的逆定理的應(yīng)用、完全平方公式、非負(fù)數(shù)的性質(zhì).判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題甲:(
1
2
x,21-x,2 x2成等比數(shù)列,命題乙:lgx,lg(x+1),lg(x+3)成等差數(shù)列,則甲是乙的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x+y+8=0,圓O:x2+y2=36(O為原點(diǎn)),橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,直線l被圓O截得的弦長等于橢圓短軸的長.
(1)求橢圓C的方程;
(2)過點(diǎn)(2,0)的直線l1與橢圓C相交于A,B兩點(diǎn),若橢圓C上存在點(diǎn)P,使
OP
=
OA
+
OB
,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=10n-n2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(4x+a),g(x)=x,設(shè)h(x)=f(x)-g(x)
(Ⅰ)若h(x)是偶函數(shù),求a的值;
(Ⅱ)若關(guān)于x的方程h(x)=0有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求棱長都為a的正四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
ax3+
1
2
bx2+(1-2a)x,a,b∈R,a≠0.
(1)若b=4a,求f(x)的單調(diào)遞增區(qū)間;
(2)若曲線y=f(x)與x軸相切于異于原點(diǎn)的一點(diǎn),且f(x)的極小值為-
4
3
a,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)系數(shù)三次多項(xiàng)式P(x)=x3+ax2+bx+c有三個非零實(shí)數(shù)根.求證:6a3+10(a2-2b) 
3
2
-12ab≥27c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)a、m滿足a≤1,0<m≤2
3
,函數(shù)f(x)=
amx-mx2
a+a(1-a)2m2
,x∈(0,a) 若存在a,m,x,使f(x)
3
2
,求所有的實(shí)數(shù)x的值.

查看答案和解析>>

同步練習(xí)冊答案