【題目】某公司為了預(yù)測(cè)下月產(chǎn)品銷售情況,找出了近7個(gè)月的產(chǎn)品銷售量(單位:萬件)的統(tǒng)計(jì)表:

月份代碼

1

2

3

4

5

6

7

銷售量(萬件)

但其中數(shù)據(jù)污損不清,經(jīng)查證,.

(1)請(qǐng)用相關(guān)系數(shù)說明銷售量與月份代碼有很強(qiáng)的線性相關(guān)關(guān)系;

(2)求關(guān)于的回歸方程(系數(shù)精確到0.01);

(3)公司經(jīng)營(yíng)期間的廣告宣傳費(fèi)(單位:萬元)(),每件產(chǎn)品的銷售價(jià)為10元,預(yù)測(cè)第8個(gè)月的毛利潤(rùn)能否突破15萬元,請(qǐng)說明理由.(毛利潤(rùn)等于銷售金額減去廣告宣傳費(fèi))

參考公式及數(shù)據(jù):,相關(guān)系數(shù),當(dāng)時(shí)認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)關(guān)系,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.

【答案】(1)見解析;(2) (3)見解析

【解析】

(1)根據(jù)中條件,計(jì)算相關(guān)系數(shù)的值,即可得出結(jié)論;

(2)根據(jù)題中數(shù)據(jù),計(jì)算出,即可得到回歸方程;

3)將代入(2)的結(jié)果,結(jié)合題中條件,即可求出結(jié)果.

(1)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得

, , ,

, 因?yàn)?/span>

所以銷售量與月份代碼有很強(qiáng)的線性相關(guān)關(guān)系.

(2) 由及(Ⅰ)得

所以關(guān)于的回歸方程為

(3)當(dāng)時(shí),代入回歸方程得(萬件)

第8個(gè)月的毛利潤(rùn)為

,預(yù)測(cè)第8個(gè)月的毛利潤(rùn)不能突破萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于由有限個(gè)自然數(shù)組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個(gè)數(shù)為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).

(1)若A={0,1,2},求S(A),T(A);

(2)若集合A有n個(gè)元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數(shù)列”;

(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個(gè)數(shù)最少的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓長(zhǎng)軸是短軸的倍,且右焦點(diǎn)為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)直線交橢圓兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為,求直線的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表,經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)yx具有線性相關(guān)關(guān)系.

價(jià)格x(元/kg

10

15

20

25

30

日需求量ykg

11

10

8

6

5

1)根據(jù)上表給出的數(shù)據(jù),求出yx的線性回歸方程;

2)利用(1)中的回歸方程,當(dāng)價(jià)格/kg時(shí),日需求量y的預(yù)測(cè)值為多少?

(參考公式:線性回歸方程,其中,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn),為直線上的動(dòng)點(diǎn),過的垂線,該垂線與線段的垂直平分線交于點(diǎn),記的軌跡為.

(1)求的方程;

(2)若過的直線與曲線交于,兩點(diǎn),直線與直線分別交于,兩點(diǎn),試判斷以為直徑的圓是否經(jīng)過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,則的最小值為__________; 有最小值,則實(shí)數(shù)的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的特征三角形;如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比,已知橢圓.

1)若橢圓,判斷相似?如果相似,求出的相似比;如果不相似,請(qǐng)說明理由;

2)寫出與橢圓相似且焦點(diǎn)在軸上,短半軸長(zhǎng)為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍;

3)如圖:直線與兩個(gè)相似橢圓分別交于點(diǎn)和點(diǎn),試在橢圓和橢圓上分別作出點(diǎn)和點(diǎn)(非橢圓頂點(diǎn)),使組成以為相似比的兩個(gè)相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過坐標(biāo)原點(diǎn)的兩條直線與橢圓分別相交于點(diǎn)和點(diǎn)、,其中直線經(jīng)過的左焦點(diǎn),直線經(jīng)過的右焦點(diǎn).當(dāng)直線不垂直于坐標(biāo)軸時(shí),的斜率乘積為.

(1)求橢圓的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(Ⅰ)是拋物線的焦點(diǎn),是拋物線上的定點(diǎn),,求拋物線的方程;

(Ⅱ)在(Ⅰ)的條件下,過點(diǎn)的直線與圓相切,設(shè)直線交拋物線兩點(diǎn),則在軸上是否存在點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案