(選做題)
如圖:在Rt∠ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,過D作DE⊥BC,垂足為E,連接AE交⊙O于點F,求證:BE·CE=EF·EA。

證明:因為Rt△ABC中,∠ABC=90°,
所以O(shè)B⊥CB,
所以CB為⊙O的切線,
所以EB2=EF·FA,
連接OD,因為AB=BC,
所以∠BAC=45°,
所以∠BOD=90°,
在四邊形BODE中,∠BOD=∠OBE=∠BED=90°,
所以BODE為矩形,
所以BE=OD=OB=AB=BC,
即BE=CE,
所以BE·CE=EF·EA。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對任意x∈R恒成立,則a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)
C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點A,B分別在曲線C1
x=3+cosθ
y=sinθ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(考生只能從A,B,C中選做一題,多做以所做第一題記分)
A.(不等式選做題)
已知a∈R,若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0無實根,則a的取值范圍是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(幾何證明選做題)
如圖,CD是圓O的切線,切點為C,點A、B在圓O上,BC=1,∠BCD=30°,則圓O的面積為
π
π

C.(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,若過點(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點,則|AB|=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(A)(幾何證明選做題)如圖,CD是圓O的切線,切點為C,點B在圓O上,BC=2,∠BCD=30°,則圓O的面積為
;
(B)(極坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)方程ρ=2sinθ+4cosθ表示的曲線截θ=
π
4
(ρ∈R)
所得的弦長為
3
2
3
2

(C)(不等式選做題)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年陜西省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

(請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對任意x∈R恒成立,則a的取值范圍是   
B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=   

C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點A,B分別在曲線C1 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)文(陜西卷)解析版 題型:填空題

 (考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

A.(不等式選做題)若不等式對任意R恒成立,則的取值范圍是            

B.(幾何證明選做題)如圖,∠B=∠D,,,且AB=6,AC=4,AD=12,則AE=        

C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系中,以原點O為極點,軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點A,B分別在曲線為參數(shù))和曲線上,則的最小值為       

 

查看答案和解析>>

同步練習(xí)冊答案