精英家教網 > 高中數學 > 題目詳情

【題目】設等差數列{an}的前n項和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數列{an}的通項公式;
(2)設數列{bn}的前n項和為Tn (λ為常數).令cn=b2n(n∈N*)求數列{cn}的前n項和Rn

【答案】
(1)解:設等差數列{an}的首項為a1,公差為d,由a2n=2an+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①

再由S4=4S2,得 ,即d=2a1

聯立①、②得a1=1,d=2.

所以an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1


(2)解:把an=2n﹣1代入 ,得 ,則

所以b1=T1=λ﹣1,

當n≥2時, =

所以

Rn=c1+c2+…+cn=

③﹣④得: =

所以 ;

所以數列{cn}的前n項和


【解析】(1)設出等差數列的首項和公差,由已知條件列關于首項和公差的方程組,解出首項和公差后可得數列{an}的通項公式;(2)把{an}的通項公式代入 ,求出當n≥2時的通項公式,然后由cn=b2n得數列{cn}的通項公式,最后利用錯位相減法求其前n項和.
【考點精析】本題主要考查了等差數列的通項公式(及其變式)和數列的前n項和的相關知識點,需要掌握通項公式:;數列{an}的前n項和sn與通項an的關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,多面體中,為正方形,,二面角的余弦值為,且.

(1)證明:平面平面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex , x∈R.
(1)若直線y=kx+1與f (x)的反函數g(x)=lnx的圖象相切,求實數k的值;
(2)設x>0,討論曲線y=f (x) 與曲線y=mx2(m>0)公共點的個數.
(3)設a<b,比較 的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校為調查學生喜歡“應用統(tǒng)計”課程是否與性別有關,隨機抽取了選修課程的60名學生,得到數據如下表:

喜歡統(tǒng)計課程

不喜歡統(tǒng)計課程

合計

男生

20

10

30

女生

10

20

30

合計

30

30

60

(1)判斷是否有99.5%的把握認為喜歡“應用統(tǒng)計”課程與性別有關?

(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學生中抽取6名學生作進一步調查,將這6名學生作為一個樣本,從中任選3人,求恰有2個男生和1個女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線過點,其參數方程為為參數,),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知曲線和曲線交于,兩點(之間),且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線

1)若直線不經過第四象限,求的取值范圍;

2)若直線軸負半軸于點,交軸正半軸于點,為坐標原點,設的面積為,求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列關于公差d>0的等差數列{an}的四個命題:
p1:數列{an}是遞增數列;
p2:數列{nan}是遞增數列;
p3:數列 是遞增數列;
p4:數列{an+3nd}是遞增數列;
其中真命題是(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF、BF,若|AB|=10,|AF|=6,cos∠ABF= ,則C的離心率e=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017514.第一屆一帶一路國際高峰論壇在北京舉行,為了解不同年齡的人對一帶一路關注程度,某機構隨機抽取了年齡在15-75歲之間的100人進行調查,經統(tǒng)計青少年中老年的人數之比為9:11

(1)根據已知條件完成上面的列聯表,并判斷能否有99%的把握認為關注一帶一路是和年齡段有關?

(2)現從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調查,在這9人中再取3人進打面對面詢問,記選取的3人中一帶一路的人數為X,求x的分布列及數學期望.

查看答案和解析>>

同步練習冊答案