【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點(diǎn)且關(guān)于軸對(duì)稱的兩條直線分別交曲線、、,且點(diǎn)在第一象限,當(dāng)四邊形的周長(zhǎng)最大時(shí),求直線的普通方程.

【答案】(1) 為參數(shù)).(2)

【解析】試題分析:(Ⅰ)首先求得的普通方程,由此可求得的參數(shù)方程;(Ⅱ)設(shè)四邊形的周長(zhǎng)為,點(diǎn),然后得到的關(guān)系式,從而利用輔助角公式求得點(diǎn)的直角坐標(biāo)點(diǎn),從而求得的普通方程.

試題解析:(Ⅰ) , 為參數(shù)).

(Ⅱ)設(shè)四邊形的周長(zhǎng)為,設(shè)點(diǎn),

,

, ,

所以,當(dāng))時(shí), 取最大值,

此時(shí),

所以, , ,

此時(shí), , 的普通方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次國(guó)際學(xué)術(shù)會(huì)議上,來自四個(gè)國(guó)家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:

甲是中國(guó)人,還會(huì)說英語(yǔ).

乙是法國(guó)人,還會(huì)說日語(yǔ).

丙是英國(guó)人,還會(huì)說法語(yǔ).

丁是日本人,還會(huì)說漢語(yǔ).

戊是法國(guó)人,還會(huì)說德語(yǔ).

則這五位代表的座位順序應(yīng)為( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校與英國(guó)某高中結(jié)成友好學(xué)校,該校計(jì)劃選派3人作為交換生到英國(guó)進(jìn)行一個(gè)月的生活體驗(yàn),學(xué)校準(zhǔn)備從該校英語(yǔ)興趣小組的6名同學(xué)中選派,已知英語(yǔ)興趣小組中男生有4人,女生有2人

(1)求男生甲或女生乙被選的概率

(2)記選派的3人中的女生人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2x+1的定義域?yàn)閇1,5],則函數(shù)f(2x﹣3)的定義域?yàn)椋?/span>
A.[1,5]
B.[3,11]
C.[3,7]
D.[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①若,則“”是“”成立的充分不必要條件;

②若橢圓的兩個(gè)焦點(diǎn)為,且弦過點(diǎn),則的周長(zhǎng)為16;

③若命題“”與命題“”都是真命題,則命題一定是真命題;

④若命題 ,則

其中為真命題的是__________(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +3(﹣1≤x≤2).
(1)若λ= 時(shí),求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最小值是1,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.

(1)寫出的極坐標(biāo)方程;

(2)若為曲線上的兩點(diǎn),且,求的范圍.

(Ⅱ)已知函數(shù), .

(1) 時(shí),解不等式;

(2)若對(duì)任意,存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1,C2的極坐標(biāo)方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點(diǎn)O)三點(diǎn)A,B,C.

)求證:

)當(dāng)時(shí),求點(diǎn)B到曲線C2上的點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且f(1)=2,f(2)=3. (I)若f(x)是偶函數(shù),求出f(x)的解析式;
(II)若f(x)是奇函數(shù),求出f(x)的解析式;
(III)在(II)的條件下,證明f(x)在區(qū)間 上單調(diào)遞減.

查看答案和解析>>

同步練習(xí)冊(cè)答案