精英家教網 > 高中數學 > 題目詳情
如圖,已知曲線與拋物線c2:x2=2py(p>0)的交點分別為A、B,曲線c1和拋物線c2在點A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當為定值時,求證k1•k2為定值(與p無關),并求出這個定值;
(Ⅱ)若直線l2與y軸的交點為D(0,-2),當a2+b2取得最小值9時,求曲線c1和c2的方程.

【答案】分析:(Ⅰ)利用導數分別求l1、l2的斜率分別為k1、k2.進而可求k1•k2,利用點A在曲線c1和拋物線c2上,結合為定值時可得結論.
(Ⅱ)設A點的坐標為,利用l2過點D(0,-2),則x2=4p,從而可求點的坐標代入曲線c1的方程得.從而利用基本不等式可求a2+b2最小值,注意等號成立的條件.
解答:解:(Ⅰ)設點A的坐標為(x,y),
得:
,∴…2′
由x2=2py(p>0)得,∴…4′

又∵x2=2py,,∴
為定值.…6′
(Ⅱ)如圖設A點的坐標為,則x∈(-a,0).
由(Ⅰ)知:,則直線
∵l2過點D(0,-2),則x2=4p,即,∴點.…8′
代入曲線c1的方程得

由重要不等式得.…10′
當且僅當“=”成立時,有,解得
,c2:y=2x2.…13′
點評:本題的考點是直線與圓錐曲線的綜合問題,主要考查橢圓與拋物線的位置關系,考查利用基本不等式求最值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知直線與拋物線y2=2px(p>0)交于A,B兩點,且OA⊥OB,OD⊥AB交AB于點D,點D的坐標為(2,1),求p的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年湖北八校聯考理)(13分)

如圖,已知曲線與拋物線的交點分別為、,曲線和拋物線在點處的切線分別為,且、的斜率分別為、.

(Ⅰ)當為定值時,求證為定值(與無關),并求出這個定值;

(Ⅱ)若直線軸的交點為,當取得最小值時,求曲線的方程。

 

查看答案和解析>>

科目:高中數學 來源:2013屆福建省四地六校高二第一次聯考理科數學 題型:解答題

(本小題滿分14分) 

如圖,已知直線與拋物線相交于兩點,與軸相交于點,若.(1)求證:點的坐標為(1,0);(2)求△AOB的面積的最小值.

 

查看答案和解析>>

科目:高中數學 來源:2008-2009學年湖北省“鄂南高中、黃岡中學、黃石二中、華師一附中、荊州中學、襄樊四中、襄樊五中、孝感高中”八校高三第二次聯考數學試卷(理科)(解析版) 題型:解答題

如圖,已知曲線與拋物線c2:x2=2py(p>0)的交點分別為A、B,曲線c1和拋物線c2在點A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當為定值時,求證k1•k2為定值(與p無關),并求出這個定值;
(Ⅱ)若直線l2與y軸的交點為D(0,-2),當a2+b2取得最小值9時,求曲線c1和c2的方程.

查看答案和解析>>

同步練習冊答案