【題目】已知過(guò)定點(diǎn)且與直線垂直的直線與軸、軸分別交于點(diǎn),點(diǎn)滿足.

1)若以原點(diǎn)為圓心的圓有唯一公共點(diǎn),求圓的軌跡方程;

2)求能覆蓋的最小圓的面積;

3)在(1)的條件下,點(diǎn)在直線上,圓上總存在兩個(gè)不同的點(diǎn)使得為坐標(biāo)原點(diǎn)),求的取值范圍.

【答案】(1) (2) (3)

【解析】

1,得在直線上,求出 ,確定圓的半徑則方程可求

2)由幾何關(guān)系得能覆蓋三角形ABC的最小圓是以AB為直徑的圓,計(jì)算,則圓的面積可求

3)由,則有OPMN互相垂直平分,得利用點(diǎn)在直線上得的不等式求解

1)因?yàn)?/span>,所以在線段的垂直平分線上,即在直線上,

以原點(diǎn)為圓心的圓有唯一公共點(diǎn),

此時(shí)圓的半徑

故:圓的方程為

2)由于三角形ABC為鈍角三角形且AB為最長(zhǎng)邊,故能覆蓋三角形ABC的最小圓是以AB為直徑的圓

由于點(diǎn),所以

故該圓的半徑為

所以能覆蓋該三角形的最小圓面積

3O為坐標(biāo)原點(diǎn)),則有OPMN互相垂直平分,

所以圓心到直線MN的距離小于1.即又

,代入(1)得

所以實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)定點(diǎn)作不垂直于x軸的直線,交拋物線于A,B兩點(diǎn).

1)設(shè)O為坐標(biāo)原點(diǎn),求證:為定值;

2)設(shè)線段的垂直分線與x軸交于點(diǎn),求n的取值范圍;

3)設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,且下列三個(gè)關(guān)系:,,中有且只有一個(gè)正確,則函數(shù)的值域是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCED中,BECD,平面ABED⊥平面BCE.在梯形ABED中,ABDE,BEABDE=BE=CE=2ABMBC的中點(diǎn),點(diǎn)N在線段DE上,且滿足DN=DE

1)求證:MN∥平面ACD

2)若AB=2,求點(diǎn)N到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>,其面積為.①若,則的值唯一;②若,則的值有2個(gè);③若為三角形,則;④若為五邊形,則.以上命題中,真命題的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是兩條異面直線,直線都垂直,則下列說(shuō)法正確的是( )

A. 平面,則

B. 平面,則,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等腰梯形中,分別為的中點(diǎn) 中點(diǎn),現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中.

(1)證明:

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(-1,0),B(1,0),C(0,1),直線y=ax+b(a>0)ABC分割為面積相等的兩部分,b的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有五張卡片,其中紅色卡片三張,標(biāo)號(hào)分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號(hào)分別為1,2.

1)將紅色卡片和藍(lán)色卡片分別放在兩個(gè)袋中,然后從兩個(gè)袋中各取一張卡片,求兩張卡片數(shù)字之積為偶數(shù)的概率

2)將五張卡片放在一個(gè)袋子中,從中任取兩張,求兩張卡片顏色不同的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案