(2012•懷化二模)已知實(shí)數(shù)x,y滿足
|x|
5
+
|y|
3
≤1
,則z=2x+y的最小值是
-10
-10
分析:1先根據(jù)約束條件畫(huà)出可行域,設(shè)z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y過(guò)可行域內(nèi)的點(diǎn)A時(shí),從而得到z=2x+y的最小值即可.
解答:解:解:先根據(jù)約束條件畫(huà)出可行域,
設(shè)z=2x+y,
將z的值轉(zhuǎn)化為直線z=2x+y在y軸上的截距,
當(dāng)直線z=2x+y經(jīng)過(guò)點(diǎn)A(-5,0)時(shí),z最小,
最小值為:-10.
故答案為:-10
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)已知向量
a
b
的夾角為120°,且|
a
|=2,|
b
|=5,則(2
a
-
b
)•
a
=
13
13

?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)已知函數(shù)f(x)是R上的偶函數(shù),且f(4-x)=f(x),當(dāng)x∈[0,2]時(shí),f(x)=x2+2x,則f(2011)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)已知函數(shù)?(x)=
a
x
,a為常數(shù),且a>0
(1)若f(x)=ln(x-1)+?(x),且a=6,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=|ln(x-1)|+?(x),且對(duì)任意x1,x2∈(1,3],x1≠x2,都有
g(x2)-g(x1)
x2-x1
<0
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)已知集合M={x∈R|(x-1)(x-2)>0}和N={x∈R|x2+x<0}則P:x∈M是q:x∈N的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案