【題目】已知圓經(jīng)過兩點(diǎn),且圓心在直線l:上.
Ⅰ求圓的方程;
Ⅱ求過點(diǎn)且與圓相切的直線方程;
Ⅲ設(shè)圓與x軸相交于A、B兩點(diǎn),點(diǎn)P為圓上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn)當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓是否經(jīng)過圓內(nèi)一定點(diǎn)?請證明你的結(jié)論.
【答案】(Ⅰ);(Ⅱ)或;(Ⅲ)經(jīng)過定點(diǎn).
【解析】
Ⅰ設(shè)圓圓心為,由求得a的值,可得圓心坐標(biāo)和半徑,從而求得圓的標(biāo)準(zhǔn)方程.
Ⅱ當(dāng)切線斜率不存在時(shí),求得的方程;當(dāng)切線斜率存在時(shí),設(shè)切線:,由圓心到切線的距離等于半徑求得k的值,可得切線的方程.
Ⅲ設(shè),由條件求得M、N的坐標(biāo),可得圓的方程再根據(jù)定點(diǎn)在x軸上,求出定點(diǎn)的坐標(biāo).
解:Ⅰ法一:設(shè)圓圓心為,由得,,
解得,,半徑為,
所以圓:.
Ⅱ當(dāng)切線斜率不存在時(shí),:.
當(dāng)切線斜率存在時(shí),設(shè)切線:,
即,由圓心到切線的距離,
解得,此時(shí):.
綜上::或
Ⅲ設(shè),則.
又,,
所以:,,:,
圓的方程為.
化簡得.
由動(dòng)點(diǎn)關(guān)于x軸的對稱性可知,定點(diǎn)必在x軸上,令,得.
又點(diǎn)在圓內(nèi),
所以當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓經(jīng)過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,設(shè)。
(1)求函數(shù)的最小正周期;
(2)當(dāng)時(shí),求函數(shù)的最大值及最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(n)=1+ + +…+ (n∈N*),計(jì)算可得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,推測當(dāng)n≥2時(shí),有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)y=Asin(ωx+φ)(A<0,ω>0,|φ|≤ )圖象的一部分.為了得到這個(gè)函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變
B.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變
D.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線l:,設(shè)圓C的半徑為1,圓心在l上.
若圓心C也在直線上,過A作圓C的切線,求切線方程;
若圓C上存在點(diǎn)M,使,求圓心C的橫坐標(biāo)a取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ (a>0,ω>0)的最大值為2,且最小正周期為π. (I)求函數(shù)f(x)的解析式及其對稱軸方程;
(II)若f(α)= ,求sin(4α+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬元) | 1 | 2 | 4 | 5 |
銷售額y(萬元) | 6 | 14 | 28 | 32 |
根據(jù)上表中的數(shù)據(jù)可以求得線性回歸方程 = x+ 中的 為6.6,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為10萬元時(shí)銷售額為( )
A.66.2萬元
B.66.4萬元
C.66.8萬元
D.67.6萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC邊上的中線AM=2 ,高線AH= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點(diǎn)M、N兩點(diǎn).
(1)求k的取值范圍;
(2)若 =12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com