【題目】已知公比為正數(shù)的等比數(shù)列,首項(xiàng),前n項(xiàng)和為,且,,成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和
【答案】(Ⅰ)an=6×()n,(Ⅱ)Tn=2﹣(n+2)()n
【解析】
(Ⅰ)設(shè)公比為q>0,由等比數(shù)列的通項(xiàng)公式和等差數(shù)列中項(xiàng)的性質(zhì),解方程可得q,即可得到所求通項(xiàng)公式;(Ⅱ)求得bnn()n,運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求和.
(Ⅰ)an=6×()n,(Ⅱ)Tn=2﹣(n+2)()n
依題意公比為正數(shù)的等比數(shù)列{an}(n∈N*),首項(xiàng)=3,
設(shè)an=3qn﹣1,
∵,,成等差數(shù)列,
∴2()=+
即2()=(+(),
化簡得4=,
從而4q2=1,解得q=±,
∵{an}(n∈N*)公比為正數(shù),
∴q,an=6×()n,n∈N*;
(Ⅱ)bnn()n,
則Tn=1()+2()2+3()3+…+(n﹣1)()n﹣1+n()n,
Tn=1()2+2()3+3()4+…+(n﹣1)()n+n()n+1,
兩式相減可得Tn()2+()3+()4+…+()n﹣n()n+1
n()n+1,
化簡可得Tn=2﹣(n+2)()n.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線,動(dòng)圓P與圓M相外切,且與直線l相切.設(shè)動(dòng)圓圓心P的軌跡為E.
(1)求E的方程;
(2)若點(diǎn)A,B是E上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且,求證:直線AB恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若方程有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為,,,,,,七組,整理得到如圖所示的頻率分布直方圖.
(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;
(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案①的概率;
(3)若從人均日收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號,并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為兩條不同的直線,、、為三個(gè)不同的平面,則下列命題正確的是( )
A.,,則B.,,則
C.,,則與是異面直線D.,,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,.
(1)當(dāng)時(shí),解不等式;
(2)若函數(shù)在區(qū)間內(nèi)恰有一個(gè)零點(diǎn),求的取值范圍;
(3)設(shè),當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. (-∞,0) B. C. (0,1) D. (0,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com