18.已知拋物線C:y2=2x的焦點(diǎn)為F,A(x0,y0)是C上一點(diǎn),|AF|=$\frac{3}{2}$x0,則x0=(  )
A.1B.2C.4D.8

分析 求出拋物線的準(zhǔn)線方程,由拋物線的定義,解方程,即可得到所求值.

解答 解:拋物線方程為y2=2x,
準(zhǔn)線方程為x=-$\frac{1}{2}$,
由拋物線的定義,可得|AF|=x0+$\frac{1}{2}$=$\frac{3}{2}$x0,
解得,x0=1.
故選A.

點(diǎn)評(píng) 本題考查拋物線的方程和性質(zhì),考查拋物線的定義及運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.已知a=2acosAcosB-2bsin2A.
(1)求C;
(2)若△ABC的面積為$\frac{{15\sqrt{3}}}{4}$,周長(zhǎng)為 15,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.給出下列結(jié)論:
①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(-1)=2,f(-3)=-1,則f(3)<f(-1);
②函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-2x)的單調(diào)遞增減區(qū)間是(-∞,0);
③已知函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2,則當(dāng)x<0時(shí),f(x)=-x2;
④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對(duì)稱,則對(duì)任意實(shí)數(shù)x,y都有f(xy)=f(x)+f(y).
則正確結(jié)論的序號(hào)是①③④(請(qǐng)將所有正確結(jié)論的序號(hào)填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知等比數(shù)列{an}的公比為正數(shù),且a1•a7=2a32,a2=2,則a1的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0,且S1+S3=18,a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){$\frac{{a}_{n}}{_{n}}$}是首項(xiàng)為1,公比為$\frac{1}{3}$的等比數(shù)列,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某中學(xué)興趣小組為調(diào)查該校學(xué)生對(duì)學(xué)校食堂的某種食品喜愛與否是否與性別有關(guān),隨機(jī)詢問了100名性別不同的學(xué)生,得到如下的2×2列聯(lián)表:
  男生 女生 總計(jì)
 喜愛 3020  50
 不喜愛 20 30 50
 總計(jì) 50 50 100
附K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.024 6.635
根據(jù)以上數(shù)據(jù),該數(shù)學(xué)興趣小組有多大把握認(rèn)為“喜愛該食品與性別有關(guān)”?( 。
A.99%以上B.97.5%以上C.95%以上D.85%以上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某學(xué)習(xí)小組20名學(xué)生一次數(shù)學(xué)考試成績(jī)(單位:分)頻率直方圖如圖所示,已知前三個(gè)矩形框垂直于橫軸的高度成等差數(shù)列.
(1)求頻率分布直方圖中a的值;
(2)分別求出成績(jī)落在[50,60)與[80,90)中的學(xué)生人數(shù);
(3)從成績(jī)?cè)赱50,60)與[80,90)中的學(xué)生中人選2人,求此2人的成績(jī)相差20分以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若x>0,y>0,$\frac{4}{x}$+$\frac{1}{y}$=$\frac{1}{4}$,則x+4y的最小值為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線C:y2=4x,過焦點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn),定點(diǎn)M(5,0).
(Ⅰ)若直線l的斜率為1,求△ABM的面積;
(Ⅱ)若△AMB是以M為直角頂點(diǎn)的直角三角形,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案