【題目】如圖,在四棱錐中,已知底面為矩形,平面,點(diǎn)為棱的中點(diǎn),求證:

(1)平面;

(2)平面平面.

【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析

【解析】

試題(1)證明線面平行,一般利用線面平行判定定理進(jìn)行論證,即從線線平行出發(fā),而線線平行的證明一般從平面幾何條件尋求,本題利用中位線性質(zhì)得.(2)面面垂直的證明,一般利用線面垂直給予證明,即需證明平面.而線面垂直的證明,需多次利用線面垂直的判定及性質(zhì)定理進(jìn)行轉(zhuǎn)化論證.

試題解析:(1)連接相交于點(diǎn),連結(jié)

因?yàn)樗倪呅?/span>為矩形,所以中點(diǎn).

因?yàn)?/span>為棱中點(diǎn),所以

因?yàn)?/span>平面,平面,

所以直線平面

(2)因?yàn)?/span>平面,平面,所以

因?yàn)樗倪呅?/span>為矩形,所以

因?yàn)?/span>,平面,所以平面

因?yàn)?/span>平面,所以平面平面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=ax2+bx+ca0),且f1

1)求證:函數(shù)fx)有兩個(gè)不同的零點(diǎn);

2)設(shè)x1,x2是函數(shù)fx)的兩個(gè)不同的零點(diǎn),求|x1x2|的取值范圍;

3)求證:函數(shù)fx)在區(qū)間(0,2)內(nèi)至少有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,分別為A、BC所對(duì)的邊,且

(1)確定角C的大小;

(2)若c,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行漢字聽(tīng)寫比賽,為了了解本次比賽成績(jī)情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(jī)(得分均為整數(shù),滿分100)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問(wèn)題:

(1)求的值;

(2)若從成績(jī)較好的第34、5組中按分層抽樣的方法抽取6人參加市漢字聽(tīng)寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不共線向量滿足||3,||2,(232)=20.

1)求;

2)是否存在實(shí)數(shù)λ,使λ2共線?

3)若(k2)⊥(),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,.

(1),求實(shí)數(shù)的值;

(2),求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)長(zhǎng)方體的容器中,里面裝有少量的水,現(xiàn)在將容器繞著其底部的一條棱傾斜.

1)在傾斜的過(guò)程中,水面的形狀不斷變化,可能是矩形,也可能變成不是矩形的平行四邊形,對(duì)嗎?

2)在傾斜的過(guò)程中,水的形狀也不斷變化,可以是棱柱,也可能變?yōu)槔馀_(tái)或棱錐,對(duì)嗎?

3)如果傾斜時(shí),不是繞著底部的一條棱,而是繞著其底面的一個(gè)頂點(diǎn),上面的第(1)問(wèn)和第(2)問(wèn)對(duì)不對(duì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P與兩個(gè)定點(diǎn)O(0,0),A(3,0)的距離的比值為2,點(diǎn)P的軌跡為曲線C.

(1)求曲線C的軌跡方程

(2)過(guò)點(diǎn)(﹣1,0)作直線與曲線C交于A,B兩點(diǎn),設(shè)點(diǎn)M坐標(biāo)為(4,0),求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中

1)在等差數(shù)列中,的充要條件;

2)已知等比數(shù)列為遞增數(shù)列,且公比為,若,則當(dāng)且僅當(dāng)

3)若數(shù)列為遞增數(shù)列,則的取值范圍是;

4)已知數(shù)列滿足,則數(shù)列的通項(xiàng)公式為

5)若是等比數(shù)列的前項(xiàng)的和,且;(其中、是非零常數(shù),),則A+B為零.

其中正確命題是_________(只需寫出序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案