已知命題p:函數(shù)y=xm在(0,+∞)為減函數(shù)命題q:復(fù)數(shù)z=m2-5m-6+(m-2)i,(m∈R)在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在第三象限.
如果p或q為真命題,p且q為假命題,求m的取值范圍.

解:∵函數(shù)y=xm在(0,+∞)為減函數(shù),∴m<0,
∵復(fù)數(shù)z=m2-5m-6+(m-2)i,(m∈R)在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在第三象限,
,解得,-1<m<2,
則p為真命題時(shí),m<0;q為真命題時(shí),-1<m<2,
∵p或q為真命題,p且q為假命題,
∴p為真命題且q為假命題;或p為假命題且q為真命題,
∴m的取值范圍:m≤-1或0≤m<2.
分析:根據(jù)冪函數(shù)的單調(diào)性求出p為真命題時(shí)m的范圍,由復(fù)數(shù)的集合意義求出q為真命題時(shí)m的范圍,再由復(fù)合命題的真假性求出m的范圍.
點(diǎn)評(píng):本題是有關(guān)命題的綜合題,涉及了冪函數(shù)的單調(diào)性,復(fù)數(shù)的幾何意義,復(fù)合命題的真假性,必須對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)掌握好.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:函數(shù)y=lgx2的定義域是R,命題q:函數(shù)y=(
13
)
x
的值域是正實(shí)數(shù)集,給出命題:①p或q;②p且q;③非p;④非q.其中真命題個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:函數(shù)y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上單調(diào)遞增.q:關(guān)于x的不等式ax2-ax+1>0解集為R.若p∧q假,p∨q真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:函數(shù)y=loga(1-2x)在定義域上單調(diào)遞增,命題Q:不等式(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x恒成立,若P∨Q是真命題,P∧Q是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:函數(shù)y=log 0.5(x2+2x+a)的值域?yàn)镽,命題q:函數(shù)y=(x-a)2在(2,+∞)上是增函數(shù).若p或q為真命題,p且q為假命題,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:函數(shù)y=lg(ax2-x+
a16
)定義域?yàn)镽; 命題Q:函數(shù)y=(5-2a)x為增函數(shù);若“p∨q”為真命題,“p∧q:”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案