設(shè)實數(shù)x,y滿足條件
4x-y-10≤0
x-2y+8≥0
x≥0,y≥0
若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
2
a
+
3
b
的最小值為( 。
分析:由已知可得2a+3b=6,則
2
a
+
3
b
=(2a+3b)(
2
a
+
3
b
)×
1
6
,然后利用基本不等式可求最小值
解答:解:不等式表示的平面區(qū)域如圖所示陰影部分,
當直線ax+by=z(a>0,b>0)
過直線4x-y-10=0與直線x-2y+8=0的交點(4,6)時,目標函數(shù)z=ax+by(a>0,b>0)取得最大12
∴4a+6b=12即2a+3b=6
2
a
+
3
b
=(2a+3b)(
2
a
+
3
b
)×
1
6
=
13+
6a
b
+
6b
a
6
13+12
6
=
25
6

當且僅當
6b
a
=
6a
b
即a=b=
6
5
時取等號
故選A
點評:本題綜合地考查了線性規(guī)劃問題和由基本不等式求函數(shù)的最值問題.要求能準確地畫出不等式表示的平面區(qū)域,并且能夠求得目標函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足條件
x≥0
x≤y
x+2y-4≤0
,則z=2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x、y滿足條件
x+y≤3
y≤x-1
y≥0
,則
y
x
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足條件
1≤lg(xy2)≤2
-1≤lg
x2
y
≤2
,則lg
x3
y4
的取值范圍為
[-4,3]
[-4,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)二模)設(shè)實數(shù)x,y滿足條件
x≥0
x≤y
x+2y≤3
則z=2x-y的最大值是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足條件
3x+y-5≤0
x+2y-5≤0
x≥0,y≥0
,若目標函數(shù)z=ax+y僅在點P(1,2)處取得最大值,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案