12.若△ABC中,a+b=4,∠C=30°,則△ABC面積的最大值是1.

分析 由條件可得△ABC的面積S=$\frac{1}{2}$ab•sinC,再利用正弦函數(shù)的值域、基本不等式求得S的最大值.

解答 解:在△ABC中,∵C=30°,a+b=4,
∴△ABC的面積S=$\frac{1}{2}$ab•sinC=$\frac{1}{2}$ab•sin30°=$\frac{1}{4}$ab≤$\frac{1}{4}$×($\frac{a+b}{2}$)2=$\frac{1}{4}$×4=1,當(dāng)且僅當(dāng)a=b=2時取等號,
故答案為:1.

點(diǎn)評 本題主要考查三角形的面積,基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線斜率為2,則該雙曲線的離心率為(( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$D.$\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}({-x}),x<0\\ x-2,x≥0\end{array}\right.$,若函數(shù)g(x)=|f(x)|-a有四個不同零點(diǎn)x1,x2,x3,x4,且x1<x2<x3<x4,則${x_1}{x_2}{a^2}-\frac{{{x_3}+{x_4}}}{2}a+2017$的最小值為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡求值:
(1)${log_3}^{\sqrt{27}}+{0.064^{\frac{1}{3}}}-{({-2})^0}+{16^{\frac{3}{4}}}$;
(2)已知${2^x}=3,{8^{\frac{y}{3}}}=9$,求2x-2y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.平面直角坐標(biāo)系中,給出點(diǎn)A(1,0),B(4,0),若直線x+my-1=0存在點(diǎn)P,使得|PA|=2|PB|,則實數(shù)m的取值范圍是m≥$\sqrt{3}$或m≤-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a<b<0,則下列不等式關(guān)系中,不能成立的是(  )
A.$\frac{1}{a}$$>\frac{1}$B.$\frac{1}{a-b}$$>\frac{1}{a}$C.a${\;}^{\frac{1}{3}}$$<^{\frac{1}{3}}$D.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.奇函數(shù)f(x)在區(qū)間[3,6]上是增函數(shù),在區(qū)間[3,6]上的最大值為8,最小值為-1,則f(6)+f(-3)的值為( 。
A.10B.-10C.9D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{{x}^{2}}{4}$+y2=1的焦點(diǎn)為F1、F2,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)在y軸上,那么|PF1|是|PF2|的( 。
A.3倍B.4倍C.5倍D.7倍

查看答案和解析>>

同步練習(xí)冊答案