【題目】已知拋物線的焦點為,為軸上的點.
(1)過點作直線與相切,求切線的方程;
(2)如果存在過點的直線與拋物線交于,兩點,且直線與的傾斜角互補,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,當x>0時滿足:①f(x)﹣2f(﹣x)=0;②對任意x1>0,x2>0,x1≠x2有(x1﹣x2)(f(x1)﹣f(x2))>0恒成立:③f(4)=2f(2)=2,則不等式x[f(x)﹣1]>0的解集為_____(用區(qū)間表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過P(3,4)點,求a的值;
(2)比較大小,并寫出比較過程;
(3)若,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,向量=(cos B,cos C),=(2a+c,b),且⊥.
(1)求角B的大小;
(2)若b=,求a+c的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側面是直角三角形,PA=6,頂點P在平面ABC內(nèi)的正投影為點D,D在平面PAB內(nèi)的正投影為點E,連結PE并延長交AB于點G.
(Ⅰ)證明:G是AB的中點;
(Ⅱ)在圖中作出點E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】1766年;人類已經(jīng)發(fā)現(xiàn)的太陽系中的行星有金星、地球、火星、木星和土星.德國的一位中學教師戴維一提丟斯在研究了各行星離太陽的距離(單位:AU,AU是天文學中計量天體之間距離的一種單位)的排列規(guī)律后,預測在火星和木星之間應該還有一顆未被發(fā)現(xiàn)的行星存在,并按離太陽的距離從小到大列出了如下表所示的數(shù)據(jù):
行星編號(x) | 1(金星) | 2(地球) | 3(火星) | 4( ) | 5(木星) | 6(土星) |
離太陽的距離(y) | 0.7 | 1.0 | 1.6 | 5.2 | 10.0 |
受他的啟發(fā),意大利天文學家皮亞齊于1801年終于發(fā)現(xiàn)了位于火星和木星之間的谷神星.
(1)為了描述行星離太陽的距離y與行星編號之間的關系,根據(jù)表中已有的數(shù)據(jù)畫出散點圖,并根據(jù)散點圖的分布狀況,從以下三種模型中選出你認為最符合實際的一種函數(shù)模型(直接給出結論即可);
①;②;③.
(2)根據(jù)你的選擇,依表中前幾組數(shù)據(jù)求出函數(shù)解析式,并用剩下的數(shù)據(jù)檢驗模型的吻合情況;
(3)請用你求得的模型,計算谷神星離太陽的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com