|
a
|=1,|
b
|=2
,
a
b
的夾角為60°,
c
=2
a
+3
b
,
d
=k
a
-
b
,且
c
d
,則k=( 。
分析:
c
d
?
a
b
=0
,利用數(shù)量積即可得出.
解答:解:∵|
a
|=1,|
b
|=2
,
a
b
的夾角為60°,∴
a
b
=|
a
| |
b
|cos60°
=1.
又∵
c
d
,∴
c
d
=0
,即(2
a
+3
b
)•(k
a
-
b
)=0
,
化為2k
a
2
-3
b
2
+(3k-2)
a
b
=0
,
∴2k-3×22+3k-2=0,
解得k=
14
5

故選D.
點(diǎn)評(píng):熟練掌握
c
d
?
a
b
=0
及數(shù)量積是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|
a
|=1,|
b
|=2,
c
=
a
+
b
,且
c
a
,則向量
a
b
的夾角為
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3-ax2+b2x+1(a、b∈R).
(1)若a=1,b=1,求f(x)的極值和單調(diào)區(qū)間;
(2)已知x1,x2為f(x)的極值點(diǎn),且|f(x1)-f(x2)|=
29
|x1-x2|,若當(dāng)x∈[-1,1]時(shí),函數(shù)y=f(x)的圖象上任意一點(diǎn)的切線斜率恒小于m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+b
(1)若-2≤a≤4,-2≤b≤4(a,b∈Z),求等式f(x)>0的解集為R的概率;
(2)若|a|≤1,|b|≤1,求方程f(x)=0兩根都為負(fù)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在鈍角△ABC中,若a=1,b=2,則最大邊c的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若a=1,b=
7
,c=
3
,求B.
(2)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,a=1,b=
3
,A=300
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案