(1)設(shè)90°<α<180°,角α的終邊上一點為P(x,),且cosα=x,求sinα與tanα的值;
(2)已知角θ的終邊上有一點P(x,-1)(x≠0),且tanθ=-x,求sinθ,cosθ.
【答案】分析:(1)由題意求點P和原點之間的距離r=,再由余弦函數(shù)的定義列出方程,求出x的值,再根據(jù)角的范圍確定x的值,再根據(jù)任意角的三角函數(shù)定義求出sinα與tanα的值;
(2)根據(jù)正切函數(shù)的定義,列出方程求出x的值,因x的值有兩個故分兩種情況,根據(jù)任意角的三角函數(shù)定義求出sinθ,cosθ的值.
解答:解:(1)由題意知,r=,∴cosα=,
x=,解得x=0或x=±
∵90°<α<180°,∴x<0,因此x=-
故r=2,sinα==
tanα==-
(2)∵θ的終邊過點(x,-1),∴tanθ=-,
又∵tanθ=-x,∴x2=1,解得x=±1.
當(dāng)x=1時,sinθ=-,cosθ=;
當(dāng)x=-1時,sinθ=-,cosθ=-
點評:本題考查了任意角的三角函數(shù)定義,即由角的終邊上的一點坐標(biāo)表示出該角的三角函數(shù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州市安溪一中、養(yǎng)正中學(xué)聯(lián)考高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在三棱錐S-ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設(shè)PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.
(1)求證:BC∥面AMP;
(2)求證:平面MAP⊥平面SAC;
(3)求銳二面角M-AB-C的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市閔行區(qū)七寶中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.
(1)求a的值;
(2)求直線B1C1到平面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年四川省成都市雙流縣棠湖中學(xué)高三(下)2月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.
(1)求a的值;
(2)求平面A1BC1與平面B1BC1所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年遼寧省名校高三數(shù)學(xué)單元測試:空間向量與立體幾何(解析版) 題型:解答題

在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.
(1)求a的值;
(2)求平面A1BC1與平面B1BC1所成的銳二面角的大。

查看答案和解析>>

同步練習(xí)冊答案