【題目】如圖,已知圓, 為拋物線上的動點,過點作圓的兩條切線與軸交于

(1)若,求過點的圓的切線方程;

(2)若,求△面積的最小值.

【答案】(1);(2)32

【解析】

(1)設切線方程為,利用圓心到切線的距離等于半徑,求出,然后求出切線方程;(2)設切線,利用切線與軸交點為圓心到切線的距離列出關系式,得到關于的二次方程設兩切線斜率分別為,通過韋達定理得到表示出三角形的面積,利用基本不等式求出最小值.

(1)當時,,所以,

設切線方程為,即,

,解得:

∴過點的圓的切線方程 .

(2)設切線,即,

切線與軸交點為,

圓心到切線的距離為,

化簡得

設兩切線斜率分別為,

,

當且僅當時取等號.

所以面積的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知空間中三點A-2,0,2,B-1,1,2,C-3,0,4,設a=,b=

1求向量a與向量b的夾角的余弦值;

2若ka+b與ka-2b互相垂直,求實數(shù)k的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,空間四邊形ABCD的兩條對棱AC,BD互相垂直,AC,BD的長分別為8和2,則平行四邊形兩條對棱的截面四邊形EFGH在平移過程中,面積的最大值是_______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動點,點P在線段OM上,且滿足|OM||OP|=16,求點P的軌跡C2的直角坐標方程;
(Ⅱ)設點A的極坐標為(2, ),點B在曲線C2上,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x<1},B={x|3x<1},則(  )
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,∠C=,AC=BC,M、N分別是BC、AB的中點,將BMN沿直線MN折起,使二面角B′﹣MN﹣B的大小為,則B'N與平面ABC所成角的正切值是(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列命題:

①“的充要條件;

②“一元二次不等式的解集為R”的充要條件;

③“直線平行于直線的充分不必要條件;

④“的必要不充分條件.

其中真命題的序號為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C上的動點P)滿足到定點A(-1,0)的距離與到定點B1,0)距離之比為

(1)求曲線C的方程。

(2)過點M(1,2)的直線與曲線C交于兩點MN,若|MN|=4,求直線的方程。

查看答案和解析>>

同步練習冊答案