【題目】設(shè)a∈R,f(x)= 為奇函數(shù).
(1)求函數(shù)F(x)=f(x)+2x﹣ ﹣1的零點(diǎn);
(2)設(shè)g(x)=2log2 ),若不等式f1(x)≤g(x)在區(qū)間[ , ]上恒成立,求實(shí)數(shù)k的取值范圍.

【答案】
(1)解:∵f(x)是奇函數(shù)

∴f(0)=0

∴a=1,f(x)=

F(x)= =

由22x+2x﹣6=0=0,可得2x=2,所以,x=1,

即F(x)的零點(diǎn)為x=1


(2)解:f1(x)= ,在區(qū)間[ ]上,由f1(x)≤g(x)恒成立,

恒成立,即 恒成立

即k2≤1﹣x2,x∈[ ],

,k>0,

所以0<k≤


【解析】由f(x)是奇函數(shù),可得f(0)=0,可求a,進(jìn)而可求f(x)(1)令F(x)=0可求函數(shù)F(x)的零點(diǎn)(2)由f1(x)≤g(x)恒成立,可得 恒成立,可得k2≤1﹣x2 , x∈[ ]恒成立,只要k2≤(1﹣x2min即可求解
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)和函數(shù)的零點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,底面為正三角形, 底面, 的中點(diǎn).

(1)求證: 平面;

(2)求證:平面平面;

3)在側(cè)棱上是否存在一點(diǎn),使得三棱錐的體積是?若存在,求出的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國(guó)的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

(1)求出2018年的利潤(rùn)(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)

(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知標(biāo)有1~20號(hào)的小球20個(gè),若我們的目的是估計(jì)總體號(hào)碼的平均值,20個(gè)小球號(hào)碼的平均值.試驗(yàn)者從中抽取4個(gè)小球,以這4個(gè)小球號(hào)碼的平均值估計(jì)總體號(hào)碼的平均值,按下面方法抽樣(按小號(hào)到大號(hào)排序):

(1)以編號(hào)2為起點(diǎn),系統(tǒng)抽樣抽取4個(gè)球,則這4個(gè)球的編號(hào)的平均值為____.

(2)以編號(hào)3為起點(diǎn),系統(tǒng)抽樣抽取4個(gè)球,則這4個(gè)球的編號(hào)的平均值為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間

(2)試問:函數(shù)圖像上是否存在不同兩點(diǎn),使得處的切線平行于直線若存在,求出的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于利用斜二側(cè)法得到的直觀圖有下列結(jié)論:①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③正方形的直觀圖是正方形;④菱形的直觀圖是菱形,以上結(jié)論正確的是( )

A. ①② B. C. ③④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l與兩直線y=1和x-y-7=0分別交于A,B兩點(diǎn),若線段AB的中點(diǎn)為M(1,-1),則直線l的斜率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,記f(x)的最大值為A.
(1)求f′(x);
(2)求A;
(3)證明:|f′(x)|≤2A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是首項(xiàng)為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對(duì)任意的正整數(shù)n,a2n1+a2n<0”的條件.(填“充要條件、充分不必要條件、必要不充分條件、即不充分也不必要條件”)

查看答案和解析>>

同步練習(xí)冊(cè)答案