(本題滿分12分 )

如圖,在等腰直角中,,, , 為垂足.沿對(duì)折,連結(jié)、,使得

(1)對(duì)折后,在線段上是否存在點(diǎn),使?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由; 

(2)對(duì)折后,求二面角的平面角的大。

(本小題滿分12分)

解:(1)在線段上存在點(diǎn),使.              

由等腰直角可知,對(duì)折后,

中,

,.               

過(guò)的垂線,與的交于點(diǎn),點(diǎn)就是   

滿足條件的唯一點(diǎn).理由如下:

連結(jié),∵,∴平面,

,即在線段上存在點(diǎn),使.          ………………4分         

中,,,得.……6分

(2)對(duì)折后,作,連結(jié),

,,

平面,

∴平面平面.                                 

,且平面平面,

平面

,所以平面,

為二面角的平面角.                   ……………………9分

中,,,

,

中,,,得

.              

中,,,                                         

所以二面角的大小為.            ……………………12分 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案