分析 (1)根據(jù)f(-x)=-f(x)求得b的值,根據(jù)函數(shù)圖象經過點(1,3),求得a的值.
(2)利用函數(shù)的單調性的定義證明f(x)在$(\frac{{\sqrt{2}}}{2},+∞)$上單調遞增.
(3)利用函數(shù)的單調性求得函數(shù)在[1,+∞)上的值域.
解答 解:(1)∵函數(shù)$f(x)=\frac{{1+a{x^2}}}{x+b}$是奇函數(shù),則f(-x)=-f(x),
∴$\frac{{1+a{{(-x)}^2}}}{-x+b}=-\frac{{1+a{x^2}}}{x+b}$,a≠0,∴-x+b=-x-b,∴b=0.
又函數(shù)圖象經過點(1,3),∴$f(1)=\frac{1+a}{1+b}=3$,∵b=0,∴a=2.
(2)由題意可得 $f(x)=\frac{{1+2{x^2}}}{x}=\frac{1}{x}+2x$,
任取${x_{1,}}{x_2}∈(\frac{{\sqrt{2}}}{2},+∞)$,并設x1<x2,
則$f({x_1})-f({x_2})=\frac{{({{x_2}-{x_1}})({1-2{x_1}•{x_2}})}}{{{x_1}•{x_2}}}$,∵${x_{1,}}{x_2}∈(\frac{{\sqrt{2}}}{2},+∞)$且x1<x2 ,
∴${x_2}-{x_1}>0,{x_1}•{x_2}>\frac{1}{2}$,1-2x1•x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在$(\frac{{\sqrt{2}}}{2},+∞)$上單調遞增.
(3)由(2)知f(x)在$(\frac{{\sqrt{2}}}{2},+∞)$上單調遞增,∴f(x)在[1,+∞)上單調遞增,
∴f(x)在[1,+∞)上的值域為[f(1),+∞),即[3,+∞).
點評 本題主要考查函數(shù)的奇偶性的應用,判斷函數(shù)的單調性,求函數(shù)的值域,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{24}$ | B. | $\frac{1}{19}$ | C. | $\frac{1}{11}$ | D. | $-\frac{23}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{2}{3}$ | C. | $\frac{9}{20}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com