橢圓的中心在原點,焦點在x軸上,一個焦點與短軸兩端點的連線互相垂直,且這個焦點到長軸上較近的端點的距離是
10
-
5
,則此橢圓的方程是:______.
設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0)
由于一個焦點與短軸兩端點的連線互相垂直,則b=c
又由這個焦點到長軸上較近的端點的距離是
10
-
5
,
故a-c=
10
-
5
,
∵a2=b2+c2
∴a=
10
,b=c=
5

∴橢圓的方程為:
x2
10
+
y2
5
=1
,
故答案為:
x2
10
+
y2
5
=1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1(-3,0),F(xiàn)2(3,0)動點p滿足:|PF1|+|PF2|=6,則動點P的軌跡為(  )
A.橢圓B.拋物線C.線段D.雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓以對稱軸為坐標軸,且長軸是短軸的3倍,并且過點(3,0),求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點(-3,2)且與
x2
9
+
y2
4
=1有相同焦點的橢圓的方程是( 。
A.
x2
15
+
y2
10
=1
B.
x2
225
+
y2
100
=1
C.
x2
10
+
y2
15
=1
D.
x2
100
+
y2
225
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的對稱軸為坐標軸,短軸的一個端點和兩個焦點的連線構(gòu)成一個正三角形,且焦點到橢圓上的點的最短距離為
3
,則橢圓的方程為( 。
A.
x2
12
+
y2
9
=1
B.
x2
9
+
y2
12
=1
x2
12
+
y2
3
=1
C.
x2
12
+
y2
3
=1
D.
x2
12
+
y2
9
=1
x2
9
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知θ為斜三角形的一個內(nèi)角,曲線F:x2sin2θcos2θ+y2sin2θ=cos2θ是( 。
A.焦點在x軸上,離心率為sinθ的雙曲線
B.焦點在x軸上,離心率為sinθ的橢圓
C.焦點在y軸上,離心率為|cosθ|的雙曲線
D.焦點在y軸上,離心率為|cosθ|的橢圓

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C1,拋物線C2的焦點均在y軸上,C1的中心和C2的頂點均為坐標原點O,從每條曲線上取兩個點,將其坐標記錄于下表中:
x0-1
2
4
y-2
2
1
16
-21
(Ⅰ)求分別適合C1,C2的方程的點的坐標;
(Ⅱ)求C1,C2的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,若在直線x=
a2
c
上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
與圓x2+y2=3b2的一個交點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且|PF1|=3|PF2|,則橢圓的離心率為( 。
A.
10
4
B.
3
5
C.
7
4
D.
14
4

查看答案和解析>>

同步練習冊答案