18.函數(shù)y=$\sqrt{x+1}$+$\frac{(x-1)^{0}}{\sqrt{2-x}}$的定義域是[-1,1)∪(1,2].

分析 根據(jù)二次個數(shù)的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{x+1≥0}\\{x-1≠0}\\{2-x>0}\end{array}\right.$,
解得:-1≤x<2且x≠1,
故答案為:[-1,1)∪(1,2].

點評 本題考查了求函數(shù)的定義域問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sin($\frac{π}{4}$-α)=a,0<α<$\frac{π}{2}$,求sin($\frac{5π}{4}$+α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,拋物線C1:y2=2px(p>0)和圓C2:(x-1)2+y2=r2(r>0),M為圓C2的圓心,過拋物線C1的焦點F的直線y=k(x-$\frac{p}{2}$)與C1交于A,B兩點,與圓C2交與C,D兩點(點C在A,B之間)且△AOF的外心到拋物線C1的準(zhǔn)線的距離為$\frac{3}{4}$.
(I)求拋物線C的方程
(Ⅱ)若圓C2:(x-1)2+y2=$\frac{33}{8}$,且|AC|=|BD|,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知(x,y)在映射f下的像是(x+y,x-y),則(1,7)在f下的原像為(4,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx.
(1)寫出函數(shù)f(x)的遞增區(qū)間.
(2)在給出的方格紙上用五點作圖法作出f(x)在一個周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線x2=y上一定點B(1,1)和兩個動點P、Q,當(dāng)P在拋物線上運動時,BP⊥PQ,則Q點的
縱坐標(biāo)的取值范圍是( 。
A.(-∞,-2]∪[2,+∞)B.(-∞,0]∪[3,+∞)C.(-∞,1]∪[3,+∞)D.(-∞,1]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.x2+y2-x+y+r=0表示一個圓,則r的取值范圍是(  )
A.r≤2B.r<2C.r<$\frac{1}{2}$D.r≤$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$f(x)=\frac{1}{{\sqrt{1-x}}}$的定義域是( 。
A.[1,+∞)B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知首項為1,公差不為0的等差數(shù)列{an}的第2,4,9項成等比數(shù)列,則這個等比數(shù)列的公比q=$\frac{5}{2}$;等差數(shù)列{an}的通項公式an=3n-2;設(shè)數(shù)列{an}的前n項和為Sn,則Sn=$\frac{3{n}^{2}-n}{2}$.

查看答案和解析>>

同步練習(xí)冊答案