7.若集合{1,2,3}={a,b,c},則a+b+c=6.

分析 利用集合相等的定義求解.

解答 解:∵{1,2,3}={a,b,c},
∴a+b+c=1+2+3=6.
故答案為:6.

點(diǎn)評(píng) 本題考查代數(shù)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意集合相等的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)積為πn,已知am-1•am+1=2am,π2m-1=2048,則m=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-2alnx+(a-2)x$.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在[1,e]上的最小值和最大值;
(2)當(dāng)a≤0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞),且x1≠x2,都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>a$恒成立,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,橢圓上一點(diǎn)M($\frac{2\sqrt{6}}{3},\frac{\sqrt{3}}{3}$),$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$=0,滿足.則橢圓的方程是$\frac{{x}^{2}}{4}$+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知p:|3x-4|>2,$q:\frac{1}{{{x^2}-x-2}}>0$求¬p是¬q的什么條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知集合A,B滿足,集合A={x|x<a},B={x||x-2|≤2,x∈R},若已知“x∈A”是“x∈B”的必要不充分條件,則a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.有限集合S中元素的個(gè)數(shù)記做card(S),設(shè)A,B都為有限集合,給出下列命題:
①A∩B=∅的充要條件是card(A∪B)=card(A)+card(B)
②A⊆B的必要不充分條件是card(A)≤card(B)+1
③A?B的充分不必要條件是card(A)≤card(B)-1
④A=B的充要條件是card(A)=card(B)
其中,真命題有( 。
A.①②③B.①②C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知x,y>0,那么$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$的最大值為 ( 。
A.2B.$\sqrt{2}$C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)已知x+x-1=3,求${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$的值.
(2)解關(guān)于x的不等式a${\;}^{2{x}^{2}-3x+2}$>a${\;}^{2{x}^{2}+2x-3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案