某小組有5名男生和3名女生,從中任選2名同學(xué)參加演講比賽,那么互斥不對立的兩個(gè)事件是
A.至少有1名男生與全是女生B.至少有1名男生與全是男生
C.至少有1名男生與至少有1名女生D.恰有1名男生與恰有2名女生
D
分析:互斥事件是兩個(gè)事件不包括共同的事件,對立事件首先是互斥事件,再就是兩個(gè)事件的和事件是全集,由此規(guī)律對四個(gè)選項(xiàng)逐一驗(yàn)證即可得到答案.
解答:解:A中的兩個(gè)事件是對立的,故不符合要求. B中的兩個(gè)事件之間是包含關(guān)系,故不符合要求;
C中的兩個(gè)事件都包含了一名男生一名女生這個(gè)事件,故不互斥;
D中的兩個(gè)事件符合要求,它們是互斥且不對立的兩個(gè)事件;
故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

從原點(diǎn)出發(fā)的某質(zhì)點(diǎn)M,按向量a=(0,1)移動的概率為,按向量b=(0,2)移動的概率為,設(shè)M可到達(dá)點(diǎn)(0,n)的概率為Pn
(1)求P1和P2的值;(2)求證:=;(3)求的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙兩人練習(xí)射擊, 命中目標(biāo)的概率分別為, 甲、乙兩人各射擊一次,目標(biāo)被命中的概率為:
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)A、B為兩個(gè)事件,且P(A)=0.3,則當(dāng)( )時(shí)一定有P(B)=0.7
A、A與B互斥    B、A與B對立  C、 D、 A不包含B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩個(gè)箱子中裝有大小相同的小球,甲箱中有2個(gè)紅球和2個(gè)黑球,乙箱中裝有2個(gè)黑球和3個(gè)紅球,現(xiàn)從甲箱和乙箱中各取一個(gè)小球并且交換。
(1)求交換后甲箱中剛好有兩個(gè)黑球的概率。
(2)設(shè)交換后甲箱中黑球的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

隨機(jī)地將編號為1,2,3,4的四個(gè)小球放入編號為1,2,3,4的四個(gè)盒子中,每個(gè)盒子放一個(gè)小球,事件“1號球放入1號盒子” 與事件“1號球放入2號盒子”是
A.對立事件B.互斥但不對立事件C.不可能事件D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本小題滿分12分)下表為某班英語及數(shù)學(xué)成績的等級分公布(共分為5個(gè)等級,最高等級分為5分),全班共有學(xué)生50人,設(shè)分別表示英語成績和數(shù)學(xué)成績的等級分(例如表中英語成績等級分為5分的共6人,數(shù)學(xué)成績等級分為3分的共15人).由已知表格,試填寫出對應(yīng)的表格(見答題卷中的表格).也即求出下列各對應(yīng)值:
(1)的概率P
A.;(2)的概率PB.;
(3)的概率P
C.;(4)的概率PD.;
(5)的概率P(E)及對應(yīng)的的值.

5
4
3
2
1
5
1
3
1
0
1
4
1
0
7
5
1
3
2
1
0
9
3
2
1

6
0

1
0
0
1
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若干人站成一排,其中為互斥事件的是( 。
A.“甲站排頭”與“乙站排頭”
B.“甲站排頭”與“乙站排尾”
C.“甲站排頭”與“乙不站排頭”
D.“甲不站排頭”與“乙不站排頭”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機(jī)地?cái)S一顆骰子,事件表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件表示“大于4的點(diǎn)數(shù)出現(xiàn)”,則事件發(fā)生的概率為____________.

查看答案和解析>>

同步練習(xí)冊答案