本題包括A、B兩小題,考生都做.
A選修4-2:矩陣與變換
已知矩陣A=
ab
cd
,若矩陣A屬于特征值3的一個(gè)特征向量為α1=
1
1
,屬于特征值-1的一個(gè)特征向量為α2=
1
-1
,求矩陣A.
B選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系x0y中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox為極軸,且長度單位相同,建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
π
4
)

(1)求直線l的傾斜角;
(2)若直線l與曲線l交于A、B兩點(diǎn),求AB.
分析:A、利用矩陣特征值、特征向量的定義,建立方程組,即可求得矩陣A;
B、(1)利用參數(shù)方程可得
cosθ=
1
2
sinθ=
3
2
且θ∈[0,π),從而可得直線l的傾斜角;
(2)求出l的普通方程,ρ=2cos(θ-
π
4
)
的直角坐標(biāo)方程,求出圓心到直線l的距離,即可計(jì)算|AB|.
解答:A解:由矩陣A屬于特征值3的一個(gè)特征向量為α1=
1
1
可得
ab
cd
1
1
=3
1
1

a+b=3
c+d=3
;            …(4分)
由矩陣A屬于特征值2的一個(gè)特征向量為α2=
1
-1
,可得
ab
cd
1
-1
=(-1)
1
-1

a-b=-1
c-d=1
…(6分)
解得
a=1
b=2
c=2
d=1
,即矩陣A=
12
21
…(10分)
B解:(1)設(shè)直線l的傾斜角為θ,則
cosθ=
1
2
sinθ=
3
2
且θ∈[0,π),∴θ=
π
3
,即直線l的傾斜角為
π
3
…(5分)
(2)l的普通方程為y=
3
x+
2
2
,ρ=2cos(θ-
π
4
)
的直角坐標(biāo)方程為(x-
2
2
)2+(y-
2
2
)2
=1,
所以圓心(
2
2
,
2
2
)
到直線l的距離d=
6
4

∴|AB|=
10
2
…(10分)
點(diǎn)評(píng):本題是選做題,考查矩陣與變換,考查坐標(biāo)系與參數(shù)方程,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題本題包括A,B,C,D四小題,請(qǐng)選定其中 兩題 作答,每小題10分,共計(jì)20分,
解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。
B選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α1=
1
-1
,屬于特征值λ2=4的一個(gè)特征向量為α2=
3
2
.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2
.點(diǎn)
P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至點(diǎn)E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個(gè)特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=cosα
y=sinα+1
(α是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省普通高中招生考試數(shù)學(xué) 題型:解答題

【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
若多做,則按作答的前兩題評(píng)分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.   選修4-1:幾何證明選講(本小題滿分10分)
  如圖,圓與圓內(nèi)切于點(diǎn),其半徑分別為,
的弦交圓于點(diǎn)不在上),
求證:為定值。

查看答案和解析>>

同步練習(xí)冊(cè)答案