橢圓的左、右焦點(diǎn)分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為。
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)是橢圓上除長軸端點(diǎn)外的任一點(diǎn),連接,設(shè)的角平分線的長軸于點(diǎn),求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)作斜率為的直線,使與橢圓有且只有一個公共點(diǎn),設(shè)直線的斜率分別為。若,試證明為定值,并求出這個定值。

(Ⅰ)   (Ⅱ)  (Ⅲ)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的離心率是其左右焦點(diǎn),點(diǎn)是直線(其中)上一點(diǎn),且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿足,求為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過點(diǎn)作直線與雙曲線相交于兩點(diǎn)、,且為線段的中點(diǎn),求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點(diǎn)P、Q且.
(1)求點(diǎn)T的橫坐標(biāo)
(2)若以F1,F2為焦點(diǎn)的橢圓C過點(diǎn).
①求橢圓C的標(biāo)準(zhǔn)方程;
②過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線與拋物線相切于點(diǎn))且與軸交于點(diǎn)為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為.

(1)若動點(diǎn)滿足|=,求點(diǎn)的軌跡.
(2)若過點(diǎn)的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點(diǎn),試求面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的焦點(diǎn)在軸上
(Ⅰ)若橢圓的焦距為1,求橢圓的方程;
(Ⅱ)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上第一象限內(nèi)的點(diǎn),直線軸與點(diǎn),并且,證明:當(dāng)變化時,點(diǎn)在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點(diǎn),口寬EF=4米,高3米建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

查看答案和解析>>

同步練習(xí)冊答案