分析 由題意可知:則A(1,1),Q1($\frac{1}{2}$,0),D(1,0),B(0,1),則直線BD:x+y=1,直線AQ:y=2x-1,求得P1($\frac{2}{3}$,$\frac{1}{3}$),則Q2($\frac{2}{3}$,0),則直線AQ2:y=3x-2,P2($\frac{3}{4}$,$\frac{1}{4}$),則Q3($\frac{3}{4}$,0),則Pi($\frac{i+1}{i+2}$,$\frac{1}{i+2}$),Qi($\frac{i}{i+1}$,0),根據三角形面積公式,${S}_{△D{Q}_{I}{P}_{I}}$=$\frac{1}{2}$丨DQi丨丨PiQi+1丨=$\frac{1}{2}$(1-$\frac{i}{i+1}$)×$\frac{1}{i+2}$=$\frac{1}{2}$($\frac{1}{i+1}$-$\frac{1}{i+2}$),采用“裂項法”即可求得$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$的值.
解答 解:如圖,以C點為坐標原點,建立平面直角坐標系,由正方形ABCD邊長為1,則A(1,1),Q1($\frac{1}{2}$,0),D(1,0),B(0,1),
則直線BD:x+y=1,直線AQ:y=2x-1,
聯(lián)立可得P1($\frac{2}{3}$,$\frac{1}{3}$),則Q2($\frac{2}{3}$,0),
則直線AQ2:y=3x-2,
聯(lián)立直線BD和直線AQ2,可得P2($\frac{3}{4}$,$\frac{1}{4}$),則Q3($\frac{3}{4}$,0),
…
可得Pi($\frac{i+1}{i+2}$,$\frac{1}{i+2}$),Qi($\frac{i}{i+1}$,0),
則${S}_{△D{Q}_{I}{P}_{I}}$=$\frac{1}{2}$丨DQi丨丨PiQi+1丨=$\frac{1}{2}$(1-$\frac{i}{i+1}$)×$\frac{1}{i+2}$=$\frac{1}{2}$($\frac{1}{i+1}$-$\frac{1}{i+2}$),
$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$=$\frac{1}{2}$$\sum_{i=1}^{10}$($\frac{1}{i+1}$-$\frac{1}{i+2}$),
=$\frac{1}{2}$[($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{11}$-$\frac{1}{12}$)],
=$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{12}$),
=$\frac{5}{24}$,
則$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$=$\frac{5}{24}$,
點評 本題考查三角形的面積公式,考查數列的應用,考查利用“裂項法”求數列的前n項和,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 144 | B. | 192 | C. | 360 | D. | 720 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com