(2012•湖南)某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數(shù)據(jù),如下表所示.
一次購物量 1至4件 5至8件 9至12件 13至16件 17件以上
顧客數(shù)(人) x 30 25 y 10
結算時間(分鐘/人 1 1.5 2 2.5 3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并估計顧客一次購物的結算時間的平均值;
(Ⅱ)求一位顧客一次購物的結算時間不超過2分鐘的概率.(將頻率視為概率)
分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可確定,y的值,進而可求顧客一次購物的結算時間的平均值;
(Ⅱ)記A:一位顧客一次購物的結算時間不超過2分鐘;A1:該顧客一次購物的結算時間為1分鐘;A2:該顧客一次購物的結算時間為1.5分鐘;A3:該顧客一次購物的結算時間為2分鐘;將頻率視為概率求出相應的概率,利用互斥事件的概率公式即可得到結論.
解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;
顧客一次購物的結算時間的平均值為
1×15+1.5×30+2×25+2.5×20+3×10
100
=1.9(分鐘);
(Ⅱ)記A:一位顧客一次購物的結算時間不超過2分鐘;A1:該顧客一次購物的結算時間為1分鐘;
A2:該顧客一次購物的結算時間為1.5分鐘;A3:該顧客一次購物的結算時間為2分鐘;
將頻率視為概率可得P(A1
15
100
= 0.15
;P(A2)=
30
100
=0.3
;P(A3)=
25
100
=0.25

∴P(A)=P(A1)+P(A2)+P(A3)=0.15+0.3+0.25=0.7
∴一位顧客一次購物的結算時間不超過2分鐘的概率為0.7.
點評:本題考查學生的閱讀能力,考查概率的計算,考查互斥事件,將事件分拆成互斥事件的和是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•湖南)某公司一下屬企業(yè)從事某種高科技產(chǎn)品的生產(chǎn).該企業(yè)第一年年初有資金2000萬元,將其投入生產(chǎn),到當年年底資金增長了50%.預計以后每年年增長率與第一年的相同.公司要求企業(yè)從第一年開始,每年年底上繳資金d萬元,并將剩余資金全部投入下一年生產(chǎn).設第n年年底企業(yè)上繳資金后的剩余資金為an萬元.
(Ⅰ)用d表示a1,a2,并寫出an+1與an的關系式;
(Ⅱ)若公司希望經(jīng)過m(m≥3)年使企業(yè)的剩余資金為4000萬元,試確定企業(yè)每年上繳資金d的值(用m表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)某幾何體的正視圖和側視圖均如圖所示,則該幾何體的俯視圖不可能是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的A,B,C三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為K(K為正整數(shù)).
(1)設生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時間;
(2)假設這三種部件的生產(chǎn)同時開工,試確定正整數(shù)K的值,使完成訂單任務的時間最短,并給出時間最短時具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數(shù)據(jù),如下表所示.
一次性購物量 1至4件 5 至8件 9至12件 13至16件 17件及以上
顧客數(shù)(人) x 30 25 y 10
結算時間(分鐘/人) 1 1.5 2 2.5 3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結算時間X的分布列與數(shù)學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結算,且各顧客的結算相互獨立,求該顧客結算前的等候時間不超過2.5分鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

同步練習冊答案