直線(xiàn)x+3=0與直線(xiàn)x+y-3=0的夾角大小為


  1. A.
    30°
  2. B.
    45°
  3. C.
    120°
  4. D.
    150°
B
分析:由于直線(xiàn)x+3=0與x軸垂直,故無(wú)法使用直線(xiàn)的夾角公式,進(jìn)行求解,我們可以根據(jù)直線(xiàn)的斜率,求出直線(xiàn)的傾斜角,進(jìn)而根據(jù)直線(xiàn)夾角的定義,得到答案.
解答:∵直線(xiàn)x+3=0與x軸垂直,
直線(xiàn)x+y-3=0的斜率為-1,則其傾斜角為135°
故直線(xiàn)x+3=0與直線(xiàn)x+y-3=0的夾角為45°
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是兩直線(xiàn)的夾角與到角問(wèn)題,其中要注意直線(xiàn)的夾角是指兩條直線(xiàn)相交所形成的四個(gè)角中不大于90°的解,本題易忽略此點(diǎn)而錯(cuò)解為135°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線(xiàn)x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)x+3=0與直線(xiàn)x+y-3=0的夾角大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市第二外國(guó)語(yǔ)學(xué)校高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

直線(xiàn)x+3=0與直線(xiàn)x+y-3=0的夾角大小為( )
A.30°
B.45°
C.120°
D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市第二外國(guó)語(yǔ)學(xué)校高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

直線(xiàn)x+3=0與直線(xiàn)x+y-3=0的夾角大小為( )
A.30°
B.45°
C.120°
D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案