解:(1)當(dāng)x=1時,y=0,代入f(x)=a•lnx+b•x
2,可得:b=0,
所以f′(x)=
,由切線方程知f′(1)=1,所以a=1,
因此a=1,b=0,所以f(x)=lnx;
(2)把f(x)和g(x)的解析式代入得:
-lnx≤lnx恒成立,
因為x>0,所以只需要t≤2xlnx在(0,+∞)恒成立即可,
令h(x)=2xlnx,則h′(x)=2(1+lnx),
當(dāng)x∈(0,
)時,h′(x)<0,所以h(x)在(0,
)上是減函數(shù),
當(dāng)x∈(
,+∞)時,h′(x)>0,所以h(x)在(
,+∞)上是增函數(shù),
所以h(x)
min=h(
)=-
,所以t≤-
;
(3)由已知得F(x)=lnx+
-
x,所以F′(x)=
+x-
,
令F′(x)=0,得到
+x=
,令y=x+
,x∈(0,2),
畫出該函數(shù)的圖象,如圖所示:
①當(dāng)
=2,即m=1時,F(xiàn)′(x)=0在區(qū)間(0,2)上只有一個根1,且在1的兩側(cè),
x+
>2,即在1的兩側(cè)F′(x)同正,此時F(x)在(0,2)上無極值點;
②當(dāng)2<
<
,即
<m<2,且m≠1時,F(xiàn)′(x)=0在區(qū)間(0,2)上有兩個不等根,
不妨設(shè)為x
1,x
2,且x
1<x
2,從圖象上看在x
1和x
2兩側(cè)F′(x)=x+
-
都是異號的,
因此x
1和x
2都是F(x)的極值點,此時F(x)在(0,2)上有兩個極值點;
③當(dāng)
,即0<m≤
時,方程在區(qū)間(0,2)上只有一個根m,
由該方程所對應(yīng)的二次函數(shù)圖象可知,F(xiàn)′(x)在m兩側(cè)的符號不同,
因此函數(shù)F(x)在區(qū)間(0,2)上只有一個極值點;
④當(dāng)
,即m≥2時,方程在區(qū)間(0,2)上只有一個根
,
由該方程所對應(yīng)的二次函數(shù)圖象可知,F(xiàn)′(x)在
兩側(cè)的符號不同,
因而函數(shù)F(x)在區(qū)間(0,2)上只有一個極值點,
綜上,當(dāng)m=1時,函數(shù)F(x)在區(qū)間(0,2)上無極值點;
當(dāng)m∈(0,
)∪[2,+∞)時,函數(shù)F(x)在區(qū)間(0,2)上有一個極值點;
當(dāng)m∈(
,1)∪(1,2)時,函數(shù)F(x)在區(qū)間(0,2)上有兩個極值點.
分析:(1)把x=1代入切線方程得到y(tǒng)=0,得到切點坐標(biāo),把切點坐標(biāo)代入f(x)中,解得b的值,求出f(x)的導(dǎo)函數(shù),把b的值代入后,再根據(jù)′(1)=1,求出a的值,把a(bǔ)與b的值代入即可確定出f(x);
(2)把(1)求出的f(x)和g(x)的解析式代入題中的不等式中,不等式要恒成立,即要當(dāng)x大于0時,t小于等于一個關(guān)系式,設(shè)這個關(guān)系式為一個函數(shù)h(x),求出h(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)等于0求出x的值,利用x的值分區(qū)間討論導(dǎo)函數(shù)的正負(fù),得到函數(shù)h(x)的單調(diào)區(qū)間,根據(jù)函數(shù)的增減性得到h(x)的最小值,進(jìn)而得到t的取值范圍;
(3)把(1)中求出的f(x)代入確定出F(x)的解析式,求出F(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)等于0,得到x+
等于一個關(guān)系式,設(shè)y=x+
,且x大于0小于2,畫出該函數(shù)的圖象,如圖所示,然后分m=1,m大于
小于2,m大于0小于等于
和m大于等于2,四種情況,根據(jù)函數(shù)的圖象,即可得到相應(yīng)區(qū)間上極值點的個數(shù).
點評:此題考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,會利用導(dǎo)數(shù)研究函數(shù)的極值,掌握導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,考查了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想,是一道中檔題.