函數(shù)f(x)=2|x-1|的遞增區(qū)間為
[1,+∞﹚
[1,+∞﹚
分析:對于指數(shù)函數(shù)中含有絕對值,首先我們需要去掉絕對值,討論x≥1或x<1兩種情況,利用指數(shù)函數(shù)的單調性進行求解;
解答:解:∵函數(shù)f(x)=2|x-1|
當x≥1時,可得f(x)=2x-1,f(x)在[1,+∞)上為增函數(shù);
當x<1時,可得f(x)=21-x=
1
2x-1
,f(x)在(-∞,1)上為減函數(shù),
∴函數(shù)f(x)=2|x-1|的遞增區(qū)間為[1,+∞),
故答案為[1,+∞);
點評:此題主要考查指數(shù)函數(shù)的單調性,是一道基礎題,解題的過程中用到了分類討論的思想;
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、已知函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=3,當x∈[0,1]時,f(x)=2-x,則f(-2 009.9)=
1.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面對命題“函數(shù)f(x)=x+
1
x
是奇函數(shù)”的證明不是綜合法的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)為定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=1,當x∈[1,2]時,f(x)=2-x,則f(-2013)=(  )

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案