已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在雙曲線上,且AF2⊥x軸,若
|AF1|
|AF2|
=
5
3
,則雙曲線的離心率等于
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題設(shè)設(shè)出|AF2|=3t,|AF1|=5t,利用雙曲線的定義求得a,在Rt△AF1F2中利用勾股定理求得c,進(jìn)而利用e=
c
a
求得離心率.
解答: 解:∵
|AF1|
|AF2|
=
5
3
,
∴設(shè)|AF2|=3t,|AF1|=5t,
∴a=t
∵AF2⊥x
∴|AF1|2=4c2+|AF2|2
即25t2=4c2+9t2,
∴c=2t,
∴e=
c
a
=2.
故答案為:2.
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是找到雙曲線方程中a,b和c的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)log3
27
+lg25+lg4+7 log72+(-9.8)0
(2)已知lg2=a,lg3=b,求log512的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-x-1.
(Ⅰ)求函數(shù)f(x)的極大值
(Ⅱ)定義運(yùn)算:
.
ab
dc
.
=ac-bd,其中a,b,c,d∈R.
①求證:?x0∈(1,+∞),使得
.
f(x0)f(
1
2
)
11
.
=0;
②設(shè)函數(shù)F(x)=f(x)+x+1,已知函數(shù)H(x)是函數(shù)F(x)的反函數(shù),若關(guān)于x的不等式
.
m            H(x)
H(f(x))  H(x)-1
.
<1(m∈R),在x∈(0,+∞)上恒成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)及其與坐標(biāo)軸的一個(gè)交點(diǎn)正好是一個(gè)等邊三角形的三個(gè)頂點(diǎn),且橢圓上的點(diǎn)到焦點(diǎn)距離的最小值為
3
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求函數(shù)f(x)=x3+x2-x的單調(diào)區(qū)間.
(2)求函數(shù)f(x)=x3-12x的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列共有10項(xiàng),其奇數(shù)項(xiàng)的和為15,偶數(shù)項(xiàng)的和為30,則該公比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2-2x+1+alnx在x1,x2取得極值,且x1<x2,則f(x2)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

側(cè)視圖和俯視圖相同的簡(jiǎn)單幾何體可以是
 
(寫(xiě)出三種).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在不等邊三角形ABC中,角A,B,C的對(duì)邊分別是a,b,c,其中a為最大邊,如果sin2(B+C)<sin2B+sin2C,則角A的范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案