半徑為2的球面上有A,B,C,D四點(diǎn),且AB,AC,AD兩兩垂直,則三個三角形面積之和的最大值為(    )

A.4 B.8 C.16 D.32 

B

解析試題分析:設(shè)AB=a,AC=b,AD=c,因?yàn),半徑?的球面上有A,B,C,D四點(diǎn),且AB,AC,AD兩兩垂直,所以,AB,AC,AD為球的內(nèi)接長方體的一個角的三條棱.
故a2+b2+c2=16,
而 SABC+SACD+SADB(ab+ac+bc)
8.
故選B.
考點(diǎn):球及其內(nèi)接幾何體的特征,基本不等式的應(yīng)用。
點(diǎn)評:小綜合題,關(guān)鍵是發(fā)現(xiàn)AB,AC,AD為球的內(nèi)接長方體的一個角的三條棱,得到a2+b2+c2=16,計(jì)算三個三角形的面積之和,利用基本不等式求最大值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

若實(shí)數(shù)滿足,則的最小值是

A.18 B.6 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知實(shí)數(shù),,則的最小值是(     )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知正數(shù)滿足,則的最小值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知互為反函數(shù),若恒成立,則實(shí)數(shù)的取值范圍為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè),若直線軸相交于點(diǎn),與軸相交于點(diǎn),且坐標(biāo)原點(diǎn)
直線的距離為,則面積的最小值為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

,則對說法正確的是

A.有最大值   B.有最小值
C.無最大值和最小值D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若實(shí)數(shù)a、b滿足ab2,是的最小值是(  )

A.18B.6 C.2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案