A. | [-2,0] | B. | (0,3) | C. | [2,4] | D. | (-1,3) |
分析 過M作⊙O切線交⊙C于R,則∠OMR≥∠OMN,由題意可得∠OMR≥$\frac{π}{6}$,|OM|≤2.再根據(jù)M(x0,2+x0),求得x0的取值范圍.
解答 解:過M作⊙O切線交⊙C于R,根據(jù)圓的切線性質(zhì),有∠OMR≥∠OMN.
反過來,如果∠OMR≥$\frac{π}{6}$,則⊙O上存在一點N使得∠OMN=$\frac{π}{6}$.
∴若圓O上存在點N,使∠OMN=$\frac{π}{6}$,則∠OMR≥$\frac{π}{6}$.
∵|OR|=1,OR⊥MR,∴|OM|≤2.
又∵M(x0,2+x0),|OM|2=x02+y02=x02+(2+x0)2=2x02 +4x0+4,
∴2x02+4x0+4≤4,解得,-2≤x0≤0.
∴x0的取值范圍是[-2,0],
故答案為:[-2,0].
點評 本題主要考查了直線與圓相切時切線的性質(zhì),以及一元二次不等式的解法,綜合考察了學生的轉(zhuǎn)化能力,體現(xiàn)了數(shù)形結合的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,2] | B. | $[\frac{3}{2},2]$ | C. | $[\frac{3}{2},+∞)$ | D. | $(\frac{3}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m<n | B. | n<m | ||
C. | n=m | D. | 不能確定m,n的大小 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{26}$ | B. | $\frac{1}{82}$ | C. | $\frac{2}{5}$ | D. | $\frac{10}{729}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com