已知角的頂點(diǎn)在原點(diǎn),始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn).
(Ⅰ)求的值;
(Ⅱ)若函數(shù),求函數(shù)在區(qū)間上的取值范圍. 

(Ⅰ);(Ⅱ)函數(shù)在區(qū)間上的值域是

解析試題分析:(Ⅰ)求的值,而,首先需求的值,由已知,角的頂點(diǎn)在原點(diǎn),始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn),可根據(jù)三角函數(shù)定義,求出,,,代入上式即可求出;(Ⅱ)若函數(shù),求函數(shù)在區(qū)間上的取值范圍,即求值域,由,得,所以可寫出的解析式,整理得,根據(jù)上,從而可求出值域.
試題解析:(Ⅰ)因?yàn)榻?img src="http://thumb.zyjl.cn/pic5/tikupic/47/c/ny3t64.png" style="vertical-align:middle;" />終邊經(jīng)過點(diǎn),所以,
        6分
(Ⅱ)  ,


,
故函數(shù)在區(qū)間上的值域是    12分
考點(diǎn):三角函數(shù)定義,三角函數(shù)求值,三角恒等變形,求三角函數(shù)值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若點(diǎn)在角的終邊上,求的值;(Ⅱ)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(Ⅰ)已知函數(shù))的最小正周期為.求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)在中,角對邊分別是,且滿足.若的面積為.求角的大小和邊b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)向量,函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)求使不等式成立的的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角A,B,C所對的邊分別為
(Ⅰ)敘述并證明正弦定理;
(Ⅱ)設(shè),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,其中
(Ⅰ)若,求的值;
(Ⅱ)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象的一部分如下圖所示.

(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值與最小值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某個(gè)公園有個(gè)池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)現(xiàn)在準(zhǔn)備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點(diǎn)D,E,F(xiàn),如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積S△DEF的最大值;
(2)現(xiàn)在準(zhǔn)備新建造一個(gè)荷塘,分別在AB,BC,CA上取點(diǎn)D,E,F(xiàn),如圖(2),建造△DEF
連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求的最小正周期;
(2)當(dāng)時(shí),求實(shí)數(shù)的值,使函數(shù)的值域恰為并求此時(shí)上的對稱中心.

查看答案和解析>>

同步練習(xí)冊答案