數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為x(x∈R),滿足Sn=nan-
n(n-1)
2
(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在x(x∈R),使
Sn
S2n
=k
(其中k是與正整數(shù)n無關(guān)的常數(shù)),若存在,求出x與k的值,若不存在,說明理由;
(3)求證:x為有理數(shù)的充要條件是數(shù)列{an}中存在三項(xiàng)構(gòu)成等比數(shù)列.
分析:(1)由Sn=nan-
n(n-1)
2
(n∈N*)得由Sn+1=nan+1-
n(n+1)
2
,由此兩方程得出an+1-an=1,即數(shù)列{an}是等差數(shù)列,由等差數(shù)列的通項(xiàng)公式寫出數(shù)列的通項(xiàng);
(2)假設(shè)存在,由題意Sn=kS2n,即xn+
1
2
n(n-1)=k(2xn+n(2n-1)),整理得(1-4k)n-(2x-1)(2k-1)=0進(jìn)行判斷即可得到x與k的值
(3)由充要條件的證明方法,先證充分性,再證必要性即可.
解答:解:由Sn=nan-
n(n-1)
2
(n∈N*)得由Sn+1=nan+1-
n(n+1)
2

故可得an+1=(n+1)an+1-nan-n∴an+1-an=1,即數(shù)列{an}是等差數(shù)列,首項(xiàng)為x公差為1,∴an=x+(n-1)(n∈N*
(2)由題意Sn=kS2n,即xn+
1
2
n(n-1)=k(2xn+n(2n-1)),整理得(1-4k)n-(2x-1)(2k-1)=0,當(dāng)x=
1
2
,k=
1
4
時(shí),該式恒成立即:當(dāng)x=
1
2
時(shí),
Sn
S2n
=
1
4
,∴x=
1
2
,k=
1
4
即為所求
(3))證明:充分性若三個(gè)不同的項(xiàng)x+i,x+j,x+k成等比數(shù)列,且i<j<k
則(x+j)2=(x+i)(x+k),即x(i+k-2j)=j2-ik
若i+k-2j=0,則j2-ik=0,∴i=j=k與i<j<k矛盾.i+k-2j≠0
∴x=
j 2-ik
i+k-2j
,且i,j,k都是非負(fù)數(shù),∴x是有理數(shù);
必要性:若x是有理數(shù),且x≤0,則必存在正整數(shù)k,使x+k>0,令y=x+k,則正項(xiàng)數(shù)列y,y+1,y+2…是原數(shù)列
x,x+1,x+2…的一個(gè)子數(shù)列,只要正項(xiàng)數(shù)列y,y+1,y+2…中存在三個(gè)不同的項(xiàng)構(gòu)成等比數(shù)列則原數(shù)列中必有3個(gè)不同項(xiàng)構(gòu)成等比數(shù)列,
不失一般性,不妨設(shè)x>0,記x=
n
m
(m,n∈N*,且m,b互質(zhì)),又設(shè)k,l∈N*,l>k,且x,x+k,x+l成等比數(shù)列,則(x+k)2=x(x+l)?2k+
m
n
k2
,為使l為整數(shù),可令k=2n,于是l=2n+mn=n(m+2),可知x,x+n,x+n(m+2),成等比數(shù)列,證畢
點(diǎn)評(píng):本題考查數(shù)列的遞推式,解題的關(guān)鍵是充分利用遞推式的恒成立的特性,通過恒等變形得到數(shù)列的性質(zhì),從而求出數(shù)列的通項(xiàng),本題第三問涉及到了充要條件的證明,要注意其證明格式.本題比較抽象,運(yùn)算量大,運(yùn)算變形時(shí)要認(rèn)真嚴(yán)謹(jǐn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}前n項(xiàng)和為Sn,且Sn=an2+bn+c(a,b,c∈R),已知a1=-28,S2=-52,S5=-100.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求使得Sn最小的序號(hào)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn為數(shù)列{an}前n項(xiàng)和,a1=2,且an+1=Sn+1,則an=
2,n=1
 
.
 
.
 
.
 
.
 
.
,n≥2
.橫線上填
3×2n-2
3×2n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,(p-1)Sn=p2-an,n∈N*,p>0,且p≠1,數(shù)列{bn}滿足bn=2logpan
(1)求an,bn;
(2)若p=
1
2
,設(shè)數(shù)列{
bn
an
}
的前n項(xiàng)和為Tn,求證:0<Tn≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•武漢模擬)已知點(diǎn)(an,an-1)在曲線f(x)=
(    )
x
上,且a1=1.
(1)求f(x)的定義域;
(2)求證:
1
4
(n+1)
2
3
-1≤
1
a1
+
1
a2
+…+
1
an
≤4(n+1)
2
3
-1
(n∈N*)
(3)求證:數(shù)列{an}前n項(xiàng)和Sn
(3n+2)
3n
2
-
3
2
(n≥1,n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn為數(shù)列{an}前n項(xiàng)和,若S n=2an-2(n∈N+),則a2等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案