A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
分析 法一:由已知根據(jù)角的范圍,利用同角三角函數(shù)基本關系式可求sin(θ+$\frac{5π}{12}$)的值,由$\frac{π}{4}$-θ=(θ+$\frac{5π}{12}$)-$\frac{2π}{3}$,利用兩角差的余弦函數(shù)公式即可計算得解.
法二:由已知利用三角函數(shù)恒等變換的應用化簡可求2sin(2θ+$\frac{π}{3}$)=0,解得:θ=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,結合θ為銳角,可得:θ=$\frac{π}{3}$,進而利用兩角差的余弦函數(shù)公式及特殊角的三角函數(shù)值即可計算得解.
解答 解:法一:∵cos(θ+$\frac{5π}{12}$)=-$\frac{\sqrt{2}}{2}$,且θ為銳角,
∴θ+$\frac{5π}{12}$∈($\frac{5π}{12}$,$\frac{11π}{12}$),可得:sin(θ+$\frac{5π}{12}$)=$\sqrt{1-co{s}^{2}(θ+\frac{5π}{12})}$=$\frac{\sqrt{2}}{2}$,
∴cos($\frac{π}{4}$-θ)=cos[(θ+$\frac{5π}{12}$)-$\frac{2π}{3}$]=cos(θ+$\frac{5π}{12}$)cos$\frac{2π}{3}$+sin(θ+$\frac{5π}{12}$)sin$\frac{2π}{3}$=(-$\frac{\sqrt{2}}{2}$)×$(-\frac{1}{2})$+$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$.
法二:∵cos(θ+$\frac{5π}{12}$)=cos(θ+$\frac{π}{2}$-$\frac{π}{12}$)=-sin(θ-$\frac{π}{12}$)=-$\frac{\sqrt{2}}{2}$,
∴sin(θ-$\frac{π}{12}$)=$\frac{\sqrt{2}}{2}$,
∴sin(θ+$\frac{π}{4}$-$\frac{π}{3}$)=$\frac{1}{2}$sin(θ+$\frac{π}{4}$)-$\frac{\sqrt{3}}{2}$cos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
∴化簡可得:sinθ(1+$\sqrt{3}$)+cosθ(1-$\sqrt{3}$)=2,兩邊平方可得:sin2θ+$\sqrt{3}$cos2θ=0,
∴可得:2sin(2θ+$\frac{π}{3}$)=0,解得:θ=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
∵θ為銳角,可得:θ=$\frac{π}{3}$,
∴cos($\frac{π}{4}$-$\frac{π}{3}$)=cos$\frac{π}{4}$cos$\frac{π}{3}$+sin$\frac{π}{4}$sin$\frac{π}{3}$=$\frac{\sqrt{2}}{2}$×($\frac{1}{2}+\frac{\sqrt{3}}{2}$)=$\frac{\sqrt{2}+\sqrt{6}}{4}$.
故選:D.
點評 本題主要考查了三角函數(shù)恒等變換在三角函數(shù)化簡求值中的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 25π | B. | 50π | C. | 100π | D. | 200π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com