【題目】已知數(shù)列{an}的通項公式為an=n2-n-30.

(1)求數(shù)列的前三項,60是此數(shù)列的第幾項?

(2)n為何值時,an=0,an>0,an<0?

(3)該數(shù)列前n項和Sn是否存在最值?說明理由.

【答案】(1)第10項 (2)0<n<6(nN*) (3)不存在,見解析

【解析】解:(1)由an=n2-n-30,得

a1=1-1-30=-30,

a2=22-2-30=-28,

a3=32-3-30=-24.

設an=60,則60=n2-n-30.

解之得n=10或n=-9(舍去).

60是此數(shù)列的第10項.

(2)令an=n2-n-30=0,

解得n=6或n=-5(舍去),a6=0.

令n2-n-30>0,

解得n>6或n<-5(舍去).

當n>6(nN*)時,an>0.

令n2-n-30<0,解得0<n<6,

當0<n<6(nN*)時,an<0.

(3)Sn存在最小值,不存在最大值.

由an=n2-n-30=(n-)2-30,(nN*)

知{an}是遞增數(shù)列,且

a1<a2<…<a5<a6=0<a7<a8<a9<…,

故Sn存在最小值S5=S6,不存在Sn的最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若存在實常數(shù),使得函數(shù)對其公共定義域上的任意實數(shù)都滿足:恒成立,則稱此直線的“隔離直線”,已知函數(shù),,,下列命題為真命題的是( )

A.內單調遞減

B.之間存在“隔離直線”,且的最小值為

C.之間存在“隔離直線”,且的取值范圍是

D.之間存在唯一的“隔離直線”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的一個頂點為,焦點在x軸上,若橢圓的右焦點到直線的距離是3

求橢圓E的方程;

設過點A的直線l與該橢圓交于另一點B,當弦AB的長度最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線的焦點,若點在拋物線上,且

求拋物線的方程;

動直線與拋物線相交于兩點,問:在軸上是否存在定點其中,使得向量與向量共線其中為坐標原點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知偶函數(shù)滿足,當時,,關于的不等式上有且只有200個整數(shù)解,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線的極坐標方程為.現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).

1)求曲線的直角坐標系方程和直線的普通方程;

2)點在曲線上,且到直線的距離為,求符合條件的點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點在點上方,直角頂點的坐標為

(1)求邊上的高線所在直線的方程;

(2)求等腰直角三角形的外接圓的標準方程;

(3)分別求兩直角邊,所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調性;

(Ⅱ)若,記函數(shù)是函數(shù)的兩個極值點,且的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)解不等式:

(2)已知a-5xax+7(a>0,且a≠1),求x的取值范圍.

查看答案和解析>>

同步練習冊答案