精英家教網 > 高中數學 > 題目詳情
已知函數h(x)=
x2-4x+m
x-2
(x∈R
,且x>2),函數y=t(x)的圖象經過點(4,3),且y=t(x)與y=h(x)的圖象關于直線y=x對稱,將函數y=h(x)的圖象向左平移2個單位后得到函數y=f(x)的圖象.
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)若g(x)=f(x)+
a
x
,g(x)
在區(qū)間(0,3]上的值不小于8,求實數a的取值范圍.
(III)若函數f(x)滿足:對任意的x1,x2∈(a,b)(其中x1≠x2),有
f(x1)+f(x2)
2
>f(
x1+x2
2
)
,稱函數f(x)在(a,b)的圖象是“下凸的”.判斷此題中的函數f(x)圖象在(0,+∞)是否是“下凸的”?如果是,給出證明;如果不是,說明理由.
分析:(Ⅰ)由題意,h(x)的圖象經過(3,4),代入可得m的值,從而可求h(x)、f(x)的解析式;
(Ⅱ)由已知有x+
3+a
x
≥8,分離參數,利用求函數最值的方法,可得實數a的取值范圍;
(III)利用新定義,作差,證明其差小于0,即可判斷.
解答:解:(Ⅰ)由題意,h(x)的圖象經過(3,4),代入可得4=
9-12+m
3-2
,解得m=7
h(x)=
x2-4x+7
x-2
,∴f(x)=h(x+2)=x+
3
x
;(3分)
(Ⅱ)∵g(x)=x+
3+a
x
,
∴由已知有x+
3+a
x
≥8有a≥-x2+8x-3,(6分)
令t(x)=-x2+8x-3,則t(x)=-(x-4)2+13,于是t(x)在(0,3)上是增函數.
∴t(x)max=12.
∴a≥12.                                                              (8分)
(III)f(x)=x+
3
x
的圖象在(0,+∞)是“下凸的”.                            (9分)
f(
x1+x2
2
)-
f(x1)+f(x2)
2
=(
x1+x2
2
+
3
x1+x2
2
)-
x1+
3
x1
+x2+
3
x2
2

=
(x1+x2)2+12-(x1+x2)(x1+
3
x1
+x2+
3
x2
)
2(x1+x2)
=
12-
3(x1+x2)2
x1x2
2(x1+x2)
12-
3(2
x1x2
)
2
x1x2
2(x1+x2)
=0

f(x1)+f(x2)
2
>f(
x1+x2
2
)

f(x)=x+
3
x
的圖象在(0,+∞)是“下凸的”.                               (12分)
點評:本題考查函數解析式的確定,考查恒成立問題,考查分離參數法的運用,考查新定義,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=elnx,g(x)=e-1•f(x)-(x+1).(e=2.718…)
(1)求函數g(x)的極大值;
(2 )求證:1+
1
2
+
1
3
+…+
1
n
>ln(n+1)(n∈N*)

(3)對于函數f(x)與h(x)定義域上的任意實數x,若存在常數k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數f(x)與h(x)的“分界線”.設函數h(x)=
1
2
x2
,試探究函數f(x)與h(x)是否存在“分界線”?若存在,請加以證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x
ax-1
的圖象過點(2,2)
(1)求函數f(x)的解析式;
(2)設函數g(x)=
1
x
,則g(x)
的圖象經過怎樣的變換可與函數f(x)的圖象重合;
(3)設函數h(x)=f(x)•g(x),求h(x)在(1,5]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數h(x)=x2,φ(x)=2elnx(其中e是自然對數的底數).
(1)判斷函數F(x)=h(x)-φ(x)的零點個數并證明你的結論;
(2)證明:當x>0時,φ(x)圖象不可能在直線y=2
e
x-e
的上方.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x
,g(x)=alnx,a∈R

(Ⅰ)若曲線y=f(x)與曲線y=g(x)相交,且在交點處有共同的切線,求a的值和該切線方程;
(Ⅱ)設函數h(x)=f(x)-g(x),當h(x)存在最小值時,求其最小值φ(a)的解析式;
(Ⅲ)對(Ⅱ)中的φ(a)和任意的a>0,b>0,證明:φ′(
a+b
2
)≤
φ′(a)+φ′(b)
2
≤φ′(
2ab
a+b
)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為奇函數,g(x)為偶函數,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調性(無需證明).
(2)求使f(x)<0的x取值范圍.
(3)設h-1(x)是h(x)=log2x的反函數,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案