某項實驗,要先后實施6個程序,其中程序A只能出現(xiàn)在第一或最后一步,程序B和C在實施時必須相鄰,問實驗順序的編排方法共有( 。
A、34種B、48種
C、96種D、144種
考點:計數(shù)原理的應用
專題:排列組合
分析:本題是一個分步計數(shù)問題,A只能出現(xiàn)在第一步或最后一步,從第一個位置和最后一個位置選一個位置把A排列,程序B和C實施時必須相鄰,把B和C看做一個元素,同除A外的3個元素排列,注意B和C之間還有一個排列.
解答: 解:本題是一個分步計數(shù)問題,
∵由題意知程序A只能出現(xiàn)在第一步或最后一步,
∴從第一個位置和最后一個位置選一個位置把A排列,有A21=2種結(jié)果,
∵程序B和C實施時必須相鄰,
∴把B和C看做一個元素,同除A外的3個元素排列,注意B和C之間還有一個排列,共有A44A22=48種結(jié)果,
根據(jù)分步計數(shù)原理知共有2×48=96種結(jié)果,
故選C.
點評:本題考查分步計數(shù)原理,考查兩個元素相鄰的問題,是一個基礎(chǔ)題,注意排列過程中的相鄰問題,利用捆綁法來解,不要忽略被捆綁的元素之間還有一個排列.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為( 。
A、y2=
3
2
x
B、y2=3x
C、y2=
9
2
x
D、y2=9x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得投資收益的范圍是[10,100](單位:萬元).現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過5萬元,同時獎金不超過投資收益的20%.
(Ⅰ)若建立函數(shù)模型y=f(x)制定獎勵方案,請你根據(jù)題意,寫出獎勵模型函數(shù)應滿足的條件;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:(1)y=
1
20
x+1;(2)y=log2x-2.試分析這兩個函數(shù)模型是否符合公司要求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,對于函數(shù)y=f(x)的圖象上不重合的兩點A,B,若A,B關(guān)于原點對稱,則稱點對(A,B)是函數(shù)y=f(x)的一組“奇點對”(規(guī)定(A,B)與(B,A)是相同的“奇點對”),函數(shù)f(x)=
lg
1
x
(x>0)
sin
1
2
x
(x<0)
的“奇點對”的組數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角,滿足sinA,sinC,sinB成等差數(shù)列,則cosC的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5共5個數(shù)字中任取一個數(shù)字,取出的數(shù)字為奇數(shù)的概率為( 。
A、
1
2
B、
1
5
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在不等式組
0≤x≤2
0≤y≤2
,所表示的平面區(qū)域內(nèi)任取一點P,若點P的坐標(x,y)滿足y≥kx的概率為
3
4
,則實數(shù)k=( 。
A、4
B、2
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3x+
3

(1)若a+b=1,求證:f(a)+f(b)為定值;
(2)設(shè)S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6),求S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足下面關(guān)系:(1)f(x+
π
2
)=f(x-
π
2
);(2)當x∈(0,π]時,f(x)=-cosx,
則下列說法中,正確說法的序號是
 
(把你認為正確的序號都填上)
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)是奇函數(shù);
③函數(shù)f(x)的圖象關(guān)于y軸對稱;
④方程f(x)=lg|x|解的個數(shù)是8.

查看答案和解析>>

同步練習冊答案