已知其中是自然對數(shù)的底 .
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(1);(2)當(dāng)時(shí),的減區(qū)間是;當(dāng)時(shí),的減區(qū)間是,增區(qū)間是.
解析試題分析:(1)函數(shù)在處取得極值即可求解的值;(2)首先考慮函數(shù)的定義域,對函數(shù)求導(dǎo)得,再對實(shí)數(shù)進(jìn)行分類討論分別求單調(diào)區(qū)間,分類時(shí)要做到不重不漏.
試題解析:(1 ) .
由已知, 解得.
經(jīng)檢驗(yàn), 符合題意. 3分
(2) .
1)當(dāng)時(shí),在上是減函數(shù). 5分
2)當(dāng)時(shí),.
①若,即,
則在上是減函數(shù),在上是增函數(shù);
②若 ,即,則在上是減函數(shù). 10分
綜上所述,當(dāng)時(shí),的減區(qū)間是,
當(dāng)時(shí),的減區(qū)間是,增區(qū)間是. 12分
考點(diǎn):1.函數(shù)的極值;2.利用導(dǎo)數(shù)判函數(shù)的單調(diào)性;3.分類討論思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若,對一切恒成立,求的最大值;
(2)設(shè),且、是曲線上任意兩點(diǎn),若對任意,直線的斜率恒大于常數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求在的延長線上,在的延長線上,且對角線過點(diǎn).已知米,米。
(1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當(dāng),的長度分別是多少時(shí),花壇的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1) 當(dāng)時(shí),求的單調(diào)區(qū)間;
(2) 若當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中且.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間[0,2]上恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù).
(1)當(dāng)時(shí),求在最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com