(2009•長寧區(qū)一模)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=3,c=4,B=
π
3
,則b=
13
13
分析:由于已知兩邊與夾角,故直接利用余弦定理可以求得答案.
解答:解:由題意,利用余弦定理得b2=16+9-2×4×3×cos
π
3
=13
,∴b=
13

故答案為
13
點(diǎn)評:本題的考點(diǎn)是解三角形,主要考查學(xué)生靈活運(yùn)用正弦、余弦定理化簡求值,關(guān)鍵是搞清問題的條件,恰當(dāng)?shù)睦谜一蛴嘞叶ɡ恚且坏阑A(chǔ)題題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•長寧區(qū)一模)已知直線m、n與平面α,β,給出下列三個命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個數(shù)是
2個
2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•長寧區(qū)一模)已知α是第四象限角,tanα=-
5
12
,則sinα=
-
5
13
-
5
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•長寧區(qū)一模)在直三棱柱ABC-A1B1C1中,∠ACB=90°,BC=CC1=a,AC=2a,
(1)求異面直線AB1與CC1所成角的大。
(2)求多面體B1-AA1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•長寧區(qū)一模)已知函數(shù)f(x)的定義域是{x|x∈R,x≠
k
2
,k∈Z}
,且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,當(dāng)0<x<
1
2
時,f(x)=3x
(1)求證:f(x+2)=f(x)且f(x)是奇函數(shù);
(2)求當(dāng)x∈(
1
2
,1)
時函數(shù)f(x)的解析式,并求x∈(2k+
1
2
,2k+1)(k∈
Z)時f(x)的解析式;
(3)當(dāng)x∈(2k+
1
2
,2k+1)
時,解不等式log3f(x)>x2-(2k+2)x+2k+1.

查看答案和解析>>

同步練習(xí)冊答案