精英家教網 > 高中數學 > 題目詳情

【題目】已知, 分別為等差數列和等比數列, , 的前項和為.函數的導函數是,有,且是函數的零點.

(1)求的值;

(2)若數列公差為,且點,當時所有點都在指數函數的圖象上.

請你求出解析式,并證明: .

【答案】1,2見解析

【解析】試題分析:(1)求出,由,得,從而可得,求出函數的零點,進而可得的值;(2)根據(1),可求出等差數列列的通項公式,由點,當時所有點都在指數函數的圖象上可得,即 取特殊值列方程組可求得,從而可得,利用等比數列的求和公式及放縮法可證明結論.

試題解析:1,又,所以

.

的零點為,而的零點,又是等比數列的首項,所以 ,

.

(2)∵,

的公比為,則.

都在指數函數的圖象上,即,即時恒成立,

解得.所以.

,

因為,所以當時, 有最小值為,所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數
(1)判斷并證明f(x)的奇偶性;
(2)求證: ;
(3)已知a,b∈(﹣1,1),且 , ,求f(a),f(b)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=loga (a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數.
(1)求f(0)的值和實數m的值;
(2)當m=1時,判斷函數f(x)在(﹣1,1)上的單調性,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實數a的取值范圍是(
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.

(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學著作《九章算術》有“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現有一根金箠,一頭粗,一頭細,在粗的一端截下1尺,重4斤;在細的一端截下1尺,重2斤;問依次每一尺各重多少斤?”根據上題的已知條件,若金箠由粗到細是依次等量減小的,則正中間一尺的重量為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次水下考古活動中,某一潛水員需潛水50米到水底進行考古作業(yè),其用氧量包含以下三個方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;

③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動中的總用氧量為升.

(1)如果水底作業(yè)時間是10分鐘,將表示為的函數;

(2)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍;

(3)若潛水員攜帶氧氣13.5升,請問潛水員最多在水下多少分鐘(結果取整數)?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓M: =1(a>b>0)的離心率為 ,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標準方程;
(Ⅱ)設直線l:y=x+m(m∈R)與橢圓M有兩個不同的交點P,Q,l與矩形ABCD有兩個不同的交點S,T.求 的最大值及取得最大值時m的值.

查看答案和解析>>

同步練習冊答案