(本小題滿分13分)
已知拋物線:的焦點(diǎn)為,過點(diǎn)作直線交拋物線于、兩點(diǎn);橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,點(diǎn)是它的一個(gè)頂點(diǎn),且其離心率.
(1)求橢圓的方程;
(2)經(jīng)過、兩點(diǎn)分別作拋物線的切線、,切線與相交于點(diǎn).證明:;
(3) 橢圓上是否存在一點(diǎn),經(jīng)過點(diǎn)作拋物線的兩條切線、(、為切點(diǎn)),使得直線過點(diǎn)?若存在,求出拋物線與切線、所圍成圖形的面積;若不存在,試說明理由.
解:(1)設(shè)橢圓的方程為 ,半焦距為.由已知條件得,
∴解得. ……………… ……………分
(2)顯然直線的斜率存在,否則直線與拋物線只有一個(gè)交點(diǎn),不合題意,
故可設(shè)直線的方程為 ,, 由
消去并整理得 ,∴ . ∵,得…5分
∴過拋物線上、兩點(diǎn)的切線方程分別是,
,即 , ,解得兩條切線、的交點(diǎn)的坐標(biāo)為,即,……分
∴∴. ………8分
(3)假設(shè)存在點(diǎn)滿足題意,由(2)知點(diǎn)必在直線上,又直線與橢圓有唯一交點(diǎn),故的坐標(biāo)為,設(shè)過點(diǎn)且與拋物線相切的切線方程為:,其中點(diǎn)為切點(diǎn).
令得,, 解得或 , ………10分
故不妨取,即直線過點(diǎn).綜上所述,橢圓上存在一點(diǎn),經(jīng)過點(diǎn)作拋物線的兩條切線、 (、為切點(diǎn)),能使直線過點(diǎn).
此時(shí),兩切線的方程分別為和. …………11分
. …………13分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com