【題目】已知函數(shù)f(x)=x2+mx+n(m,n∈R)滿足f(0)=f(1),且方程x=f(x)有兩個相等的實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當x∈[0,3]時,求函數(shù)f(x)的值域.
【答案】(1) f(x)=x2-x+1.
(2) .
【解析】分析:(1)根據(jù),求出m的值,再根據(jù)方程有兩個相等的實數(shù)根,得到判別式,求出n的值,從而求出函數(shù)的解析式;
(2)根據(jù)二次函數(shù)的性質(zhì),求出其對稱軸,得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的值域.
詳解: (1)∵f(x)=x2+mx+n,且f(0)=f(1),
∴n=1+m+n,∴m=-1,∴f(x)=x2-x+n.
∵方程x=f(x)有兩個相等的實數(shù)根,即x2-2x+n=0有兩個相等的實數(shù)根,
∴(-2)2-4n=0,∴n=1,∴f(x)=x2-x+1.
(2)由(1)知f(x)=x2-x+1. 此函數(shù)的圖象是開口向上,對稱軸為x=的拋物線,
∴當x=時,f(x)有最小值f.
而f=2-+1=,f(0)=1,f(3)=32-3+1=7,
∴當x∈[0,3]時,函數(shù)f(x)的值域是.
科目:高中數(shù)學 來源: 題型:
【題目】某學校高二年級一個學習興趣小組進行社會實踐活動,決定對某“著名品牌”系列進行市場銷售量調(diào)研,通過對該品牌的系列一個階段的調(diào)研得知,發(fā)現(xiàn)系列每日的銷售量(單位:千克)與銷售價格(元/千克)近似滿足關(guān)系式,其中,為常數(shù).已知銷售價格為6元/千克時,每日可售出系列15千克.
(1)求函數(shù)的解析式;
(2)若系列的成本為4元/千克,試確定銷售價格的值,使該商場每日銷售系列所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是各項均為正整數(shù)的等差數(shù)列,公差d∈N* , 且{an}中任意兩項之和也是該數(shù)列中的一項.
(1)若a1=4,則d的取值集合為;
(2)若a1=2m(m∈N*),則d的所有可能取值的和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-中,平面ABC,D,E,F,G分別為,AC,,的中點,AB=BC=,AC==2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|2x+1|,a∈R.
(1)當a=1時,求不等式f(x)≤1的解集;
(2)設關(guān)于x的不等式f(x)≤-2x+1的解集為P,且 P,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍;
(2)設函數(shù)g(x)=(3a+1)x﹣(a2+a)x2 , 當x>1時,f(x)<g(x)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為與,且乙投球3次均未命中的概率為,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“a<﹣2”是“函數(shù)f(x)=ax+3在區(qū)間[﹣1,2]上存在零點x0”的( )
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分也非必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com