已知a,b為常數(shù),若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集10講練習(xí)卷(解析版) 題型:填空題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=5,S9=99,則數(shù)列的前n項(xiàng)和Tn=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題
曲線C的直角坐標(biāo)方程為x2+y2-2x=0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題搶分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
設(shè)L為曲線C:y=在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC的中點(diǎn),又∠CAD=30°,PA=AB=4,點(diǎn)N在線段PB上,且=.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCD=l,試問直線l是否與直線CD平行,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:填空題
已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其函數(shù)對(duì)應(yīng)關(guān)系如下表:
則方程g(f(x))=x的解集為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)f(x)=則f(5)的值為( )
(A)10 (B)11 (C)12 (D)13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( )
(A)f(x)+|g(x)|是偶函數(shù)
(B)f(x)-|g(x)|是奇函數(shù)
(C)|f(x)|+g(x)是偶函數(shù)
(D)|f(x)|-g(x)是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(二)第一章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
若m,n∈N*,則“a>b”是“am+n+bm+n>anbm+ambn”的( )
(A)充分而不必要條件 (B)必要而不充分條件
(C)充要條件 (D)既不充分也不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com