在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點是橢圓在第一象限上的任一點,連接,過點作斜率為的直線,使得與橢圓有且只有一個公共點,設(shè)直線的斜率分別為,,試證明為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作,設(shè)于點,
證明:當(dāng)點在橢圓上移動時,點在某定直線上.

(Ⅰ)橢圓的方程為;(Ⅱ)3;(III)點在直線上.

解析試題分析:(Ⅰ)由拋物線的焦點求出橢圓的焦點,又橢圓過點,得:,
,,解方程組可得橢圓的方程:
(Ⅱ)設(shè)出切點的坐標(biāo)和切線的方程,利用直線和橢圓相切的條件,證明為定值.
(III)利用(Ⅱ)的結(jié)果,由,寫出直線的方程,可解出于點
的坐標(biāo),進而證明當(dāng)點在橢圓上移動時,點在某定直線上.

試題解析:(Ⅰ)由題意得 ,
,         2分
消去可得,,解得(舍去),則,
求橢圓的方程為.        4分
(Ⅱ)設(shè)直線方程為,并設(shè)點,
.
,         6分
,當(dāng),直線與橢圓相交,所以,,
,       8分
,整理得:.而,代入中得
為定值.        10分
(用導(dǎo)數(shù)求解也可,若直接用切線公式扣4分,只得2分)
(III)的斜率為:,又由,
從而得直線的方程為:,聯(lián)立方程,
消去得方程,因為, 所以 ,
即點在直線上.         14分
考點:1、橢圓的標(biāo)準(zhǔn)方程;2、拋物線的標(biāo)準(zhǔn)方程;3、直線與橢圓的位置關(guān)系;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點、,動點滿足:,且
(1)求動點的軌跡的方程;
(2)已知圓W: 的切線與軌跡相交于P,Q兩點,求證:以PQ為直徑的圓經(jīng)過坐標(biāo)原點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓 的離心率為 ,點 為其下焦點,點為坐標(biāo)原點,過 的直線 (其中)與橢圓 相交于兩點,且滿足:.

(1)試用  表示 ;
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線.
(1)若曲線是焦點在軸上的橢圓,求的取值范圍;
(2)設(shè),過點的直線與曲線交于,兩點,為坐標(biāo)原點,若為直角三角形,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的右頂點為A(2,0),點P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓上的點到其兩焦點距離之和為,且過點
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標(biāo)原點,斜率為的直線過橢圓的右焦點,且與橢圓交于點,,若,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點在拋物線上.
(1)若的三個頂點都在拋物線上,記三邊,所在直線的斜率分別為,,,求的值;
(2)若四邊形的四個頂點都在拋物線上,記四邊,,所在直線的斜率分別為,,,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的右焦點為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于,兩點,分別為線段的中點. 若坐標(biāo)原點在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓.

(1)橢圓的短軸端點分別為(如圖),直線分別與橢圓交于兩點,其中點滿足,且.
①證明直線軸交點的位置與無關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點的兩條互相垂直的直線,其中交圓兩點,交橢圓于另一點.求面積取最大值時直線的方程.

查看答案和解析>>

同步練習(xí)冊答案