精英家教網 > 高中數學 > 題目詳情

如圖,在四棱柱中,已知平面平面,.

(1)求證:
(2)若為棱的中點,求證:平面.

⑴詳見解析;⑵詳見解析

解析試題分析:⑴要證明線線垂直,可轉化為證明線面垂直,根據題中四邊形中的條件,不難求得,又由題中已知條件,結合面面垂直的性質定理就可證得,進而得證; ⑵要證明,根據線面平行的判定定理,可轉化為證明線線平行,結合題中條件可證,在四形中,由并在三角形中結合余弦定理可求出,即可證得,問題得證.
試題解析:⑴在四邊形中,因為,所以,     2分
又平面平面,且平面平面
平面,所以平面,               4分
又因為平面,所以.               7分
⑵在三角形中,因為,且中點,所以,  9分
又因為在四邊形中,,,
所以,所以,所以,   12分
因為平面平面,所以平面. 14分
考點:1.線線,線面平行;2.線面,面面垂直;3.余弦定理的運用

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,在三棱錐中,平面,.

(Ⅰ)求證:
(Ⅱ)設分別為的中點,點為△內一點,且滿足,
求證:∥面;
(Ⅲ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:平面;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,⊥面,為線段上的點.

(Ⅰ)證明:⊥面 ;
(Ⅱ)若的中點,求所成的角的正切值;
(Ⅲ)若滿足⊥面,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖的幾何體中,平面,平面,△為等邊三角形,,的中點.

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知四棱錐P-ABCD的底面為菱形,且∠ABC =60°,AB=PC=2,AP=BP=

(Ⅰ)求證:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖四棱錐中,底面是平行四邊形,平面,垂足為,上且,,的中點,四面體的體積為.

(1)求過點P,C,B,G四點的球的表面積;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點,使,若存在,確定點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在長方體中,為線段中點.

(1)求直線與直線所成的角的余弦值;
(2)若,求二面角的大小;
(3)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知四棱錐P-ABCD,底面ABCD是、邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.

(1)證明:MB平面PAD;
(2)求點A到平面PMB的距離.

查看答案和解析>>

同步練習冊答案